Effect of extremely low frequency magnetic field in growth, CMCase, electric conductivity and DNA of Aspergillus niger

Sahar E. Abo-Neima, Mohammad M El-Metwally

Abstract


In the past years the extremely low frequency magnetic field (ELF-MF) of the millimeter range has been actively used in biology, medicine, biotechnology, in this study the impact of electromagnetic radiations in growth, carboxymethycellulase activity (CMCase), cell conductivity and RAPD DNA pattern of A. niger were investigated. Experimentally, when the fungus treated with magnetic field at constant intensity 50Hz, 10 mT at different exposure times for five days (2 h/day) the total biomass dry weight inhibited by 72.2% after the first 2 h. ELF-MF showed also inhibition effect of in CMCase activity of A. niger. The enzyme activity was decreased from 30 IU/ml to 22.5 IU/ml after only 2h of exposure and the treated fungus lost about 50% of its CMCase activity after 10 h.The treated fungus showed also decreased in conductivity of fungal cells from 1.78×10-1 to 0.51×10-5 Siemens/meter. The study extended to detect the changes in RAPD patterns of A. niger DNA before and after exposure to the 50 Hz frequency. In conclusion, ELF-MF can be used as a safe method in control the activity of higly resistant fungi as A. niger.

 


Keywords


Electromagnetic radiation, CMCase, electric conductivity

Full Text:

PDF

References


Acharya, S. N.; Thomas, J. E.; Basu, S. K.,(2008): Fenugreek, an alternative crop for semiarid regions of North America. Crop Sci., 48 (3), 841-853

Aiman M. Ahmad,Abdul Ghani I. Yahya andAbdul Wahid Sh. Jabir,(2013): Effect of Magnetic Field Energy on Growth of Aspergillus flavusand Aflatoxins production, Journal of Al-Nahrain University 16 (2), 180-187

Al-Mayah A. and Eman T. Ali (2010): Mobile microwave effect on bacterial antibiotic sensitivity. Bas, J. Vet. Res, 10(2):89-103.

Blank, M. and R. Goodman,(2000): Stimulation of stress response by low frequency electromagnetic fields: possibilityof direct interaction with DNA. Bioelctromagnetics J., 28: 168‐172 .

Cellini, L., Grande, R., Di Campli, E., (2008). Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 29: 302–311.

Dobson, S.T.; Pierre, T.J.; Weiser, H.G and fuller, M.R, (2000): Changes in paroxysmal brainwave patterns of epileptics by weak field magnetic stimulation.Bioelctromagnetics J. ; 21 : 423 – 430.

Eberswalde FH (2009): Orduung fur das praktische Studiensemester des student-ganges Landschaftsnutzung und Naturschutz (Bachelor of Science). Anlage 2zur studien-und prufungsordung.URL:WWW.hnce.de/app/so.asp?o=/obj/E6F60AFB-D670-4160-882D-BEB783396722/outline/ LN-BSc-SPO-WS-2009-Anlage-2- Praktikumsordnung.pdf.

Fojt L., Strašák L., Vetterl V. and Šmarda J. (2004): Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus, Bioelectrochemistry. , 63, 337-341, 2004.

G. Neumann and G. van Noord (1992): Self-monitoring with reversible grammars. In Proceedings of the 14th International Conference on Computational Linguistics (COLING), pages 700-706, Nantes.

Galvanoskis J. and Sandblom, J, (1998):Theortical studies of the effects of low – frequency field on the magnitude of oscillation, Bioenergy J 46: 161 – 174.

Hai-Rong C. and Ning, J,(2006): Extremely rapid extraction of DNA from bacteria and yeasts, Biotechnology Letters 28: 55–59.

Justo, O.R. V.H.Perez, D.C.Alvarez and R.M. Alegre (2006): Growth of Escherichia coli under extremely low-frequency electromagnetic fields, Applied Biochemistry and Biotechnology. , 134:155-163.

Kasatova, E.S., I.V.,Struchkova, N.A.,Anikina& V.F,(2017): Smirnov, Effect of weak low-frequency electromagnetic field on activity of Trichodermavirensextracellular oxidoreductases.Mikol. Fitopatol, 51(2): 99–103.

Kaushlesh K. Yadav Mohd Shariq, Sarad K. Maurya , Md.Nasruddin Alam, Khurshid Ahmad Maurya (2012): molecular characterization of cellulose degrading bacteria on the basis of 16s rRNA, journal of recent advances in applied sciences (JRAAS),27:80-92.

Li, J., Menzel, W. P., Sun, F., Schmit, T. J., & Gurka, J. J. (2004): AIRS subpixel

cloud characterization using MODIS cloud products. J. Appl. Meteorol, 43: 1083−1094.

Manoliu, A.,L.,Oprica, Z.,Olteanu, I.,Neacsu, I., Rusu, D., refrenceCreanga, and I.,Bodale, (2005):The magnetosensitivity of some cellulolytic fungi revealed by means of the soluble protein response to electromagnetic field exposure, AnaleleŞtiinţifice ale Universităţii “Al. I. Cuza” din Iaşi. BiofizicăFizică medical şiFizica mediului,1:77–80.

Matthews, EK.,(1986):British Medical Bulletin, Calcium and membrane permeability. Microbio. Gene J 42: 391‐397.

May, A.E.,Snoussi, S.R.,Miloud, N.B., Maatouk, L.B. and Aissa, R.B,(2009): Foodborne Effect of static magnetic field on cell growth, viability, and differential gene expression in salmonella, pathog, Dis. J. 6: 547 –552.

Nagy P. (2004): Electromagnetic Fields and Free Radicals. Environ Health Perspect. 112(13): A726. doi: 10.1289/ehp.112-a726a

Nagy, P. (2005):The effect of low inductivity static magnetic field on some plant pathogen fungi, Journal of Central European Agriculture,6:167-172.

Nagy, P., and Fischl, G. (2004). Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi. Bioelectromagnetics, 25(4): 316–318. doi:10.1002/bem.20015. PMID:15114642.

National research centre for spices (ICAR),Kerala, p 63 Fevzi B (2001): Random Amplified Gujarat Agricultural university, Sardar krishinagar, Dantiwada Karkachi NE,Gharbi S,Kihal M,Hemmi JE (2010) Biological 44 H.P.

Novák, J., Strašák, L., Fojt, L., Slaninová, I., and Vetterl, V. (2007): Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 70(1): 115–121. doi:10.1016/j.bioelechem.2006.03.029. PMID:16713383.

Pirogova, E., Vojisavljevic V and Cosic I, (2009):Biological Effects of Electromagnetic Radiation, in Biomedical Engineering, Vukovar In-Tech, 87–106.

Potenza, L., Saltarelli, R., Polidori, E., Ceccaroli, P.,Amicucci, A., Zeppa, S., Zambonelli, A., &V.,Stocchi (2012): Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on magnetic Tuber borchiimycelium, Can. J. Microbiol,58(10):1174–1182.

Richard G. Stevens (2005): The effect of low inductivity static manetic field on some plant pathogens fungi. Journal of Central European Agriculture 6:167-171.

Ruiz-Go ́meza, M.J., Prieto-Barciab, M.I. Ristori-Bogajoc, E. Martı ́nez-Morillo.,M.(2004):

Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 64 :151–155.

Sadauskas, K.K., Lugauskas, A.Y., and A.I., M. (1987) Effects of constant and pulsating low-frequency magnetic field on microscopic fungi. Mikol. Fitopatol. 21: 160–162.

Shazia, K.M., Hamid, M., Ammad, A.F. and Ikram, U.H. (2010): Optimization of process parameters for the biosynthesis of cellulose by Trichoderma viride. Pakistan Journal of Botany,6(42),4243-4251.

Shckorbatov, Y.G., Shakhbazov, V.G., Gorobets, N.N.,Kiyko, V.I., Zhuravleva, L.A., Navrotskaya, V.V, (2000):The Influence of Electromagnetic Radiation of Millimeter and Centimeter Range on Human Epithelial Cells. Proceedings of 10th International Crimean Conference "Microwave and Telecommunication Technology",Crimea,557–558.

Volpe P. (2003) Interaction of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochemical and Photobiological Sciences 2:637–648

Simko M. (2004) Induction of cell activation processes by low frequency electromagnetic fields. Scientific World Journal 4(2):4–22.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 The Journal of Applied Sciences Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.