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ABSTRACT  
The purpose of an irrigation experiment is to increase food security during the dry 
season; thus, it is crucial to select an experimental design that can effectively and 
efficiently assess the effects of various irrigation techniques on crop productivity. A 
complete factorial design and a confounded design are two possible designs that may 
be employed. Hence, this study compared the performance of the 33 full factorial and 
33-p confounded design for the dry season irrigation experiment.  The objectives of the 
study include: to group the treatment in a 33 full factorial experiment into various 
blocks using confounding; to test the significance of main effects and the interaction 
effects not confounded and to calculate the gain in precision when the 33 full factorial 
design is confounded. The data for this study were secondary data obtained from the 
Anambra State River Basin Authority (ARBA) in Anambra State. The findings of the 
study showed that factor B (row spacing) has a significant impact on the design using 
the full factorial design while the no effect and interactions were found to 
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insignificantly impact on the confounded design. It was found that the full factorial 33 
experiment minimizes the average variance of the parameter estimates and minimizes 
the maximum variance of all possible normalized linear combinations of parameter 
estimates than the confounded experiment which was found to relatively maximize the 
information matrix than the confounded experiment but the confounded experiment 
which relatively maximizes the information matrix than the full factorial experiment. 
The full factorial design provides an increase in precision of about 13% when 
employed instead of the confounded design, and it was found that the full factorial 
design comparatively optimizes the information matrix compared to the confounded 
design with a value of 0.94, which is close to 1. As a result, it was shown that 
confounding a full factorial design does not always result in a more efficient design 
since some information is lost when specific effects are confounded with blocks. 
Keywords: Confounded, Factorial Experiment, Irrigation experiment, Wheat 
 
INTRODUCTION  
The experimental design is a method for meticulously organizing studies to ensure 
that your findings are both impartial and reliable. A strategy for applying various 
experimental circumstances to various units is known as an experimental design. This 
plan aims to find out how the conditions impact certain measurements, sometimes 
referred to as the criteria or the dependent variable (Crespi, 2016). The person may be 
exposed to various settings under various conditions. These circumstances emerge 
from elements that are typically referred to as independent variables that have a range 
of values termed levels (Eae, 2003). Variables with two or more fixed values, or 
levels, are considered to be the elements of an experimental design. To investigate 
how the amounts of the factors affect the dependent variable, experiments are 
conducted (Gujral et al., 2018). 
The experimental design used should ideally specify how treatments are assigned to 
experimental groups. A typical approach is a totally random design, in which 
treatments are distributed to groups at random. An alternative approach is known as 
randomized block design, in which treatments are split into homogeneous blocks and 
then randomly assigned to groups. Moreover, confounding factors should be reduced 
or eliminated as they might provide additional justifications for the findings of the 
experiment. It also reduces variability, making it simpler for you to identify variations 
in treatment results by drawing conclusions about the link between independent and 
dependent variables.  
A factorial experiment is a crossing factor design that often includes numerous 
factors, allowing for the examination of every conceivable factor combination 
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(Fukuda et al., 2018). Because there are more variables, there are more treatment 
options available, and it becomes impossible to fit all of these treatment combinations 
into a single homogeneous block. In industrial research and development, the two-
level series of the factorial and fractional factorial design is frequently used 
(Montgomery, 2001).  
Certain issues come up in the statistical design of experiments these issues are 
illustrated as follows. Firstly, the research problem should be translated into statistical 
terms. Thus, applying a statistical design always involves consideration of the field of 
research as well as statistical considerations. A second issue is the construction of a 
set of treatments. This entails the decision of using factorial designs if such designs 
are to be used, then, one has to decide on the level of the factors and the combinations 
of factor level to be used in the experiment. Usually, the levels-or at least the range of 
these-are chosen based on earlier experience. The choice of combinations of levels is 
typically a statistical issue, although there may be practical constraints. In most 
research, there is to be a two-level experiment, possibly because of cost 
considerations, waste of experimental materials and the efficiency of the design of the 
experiment (Schoen, 2000). The factorial permits the sensitive detection of active 
interactions. All combinations of the factor’s levels are tried out, permitting the 
unambiguous estimation of all main effects and all interactions. All the treatments are 
tried more than once. This feature permits the estimation of random error. Thirdly, 
there is the issue of allocating treatments to the experimental units. This issue is 
intimately connected to the experimental conduct. Also, the statistical analysis of the 
results can also be viewed as a design issue. This is because the separation of random 
and symmetric differences highly depends on the exact handling of experimental 
material and the available treatments (Schoen, 2000). 
 A simple experimental design is the full-factorial r3k, which consists of all possible 
combinations of the levels of the factors. In a full-factorial design, all main effects, 
two-way interactions, the higher-order interactions are estimable and uncorrelated. 
Several factors or variables are varied concurrently in a full factorial design, allowing 
for the analysis of both the main effects and the interaction effects of each variable on 
the outcome of interest. A full factorial design might entail adjusting variables 
including irrigation schedule and frequency, type and quantity of fertilizer used, and 
crop variety in the context of a dry season irrigation experiment. Alternatively, the 
full-factorial design can be said to involve testing all possible combinations of the 
elements under investigation is part of a full factorial design. This would entail 
experimenting with every conceivable combination of various irrigation methods and 
timings in the case of an irrigation experiment. The ability to identify particular 
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interactions between the components being researched makes this sort of design 
extremely effective, but it may also be time- and resource-intensive. This approach 
can give more detailed and accurate information about how each element affects 
agricultural output and quality, and it can assist determine the best combinations of 
factors to increase food security. 
The problem with a full-factorial design is that, for most practical situations, it is 
costly and tedious to have subject’s rate at all possible combinations. For this reason, 
researchers often use confounded designs, which have fewer treatments than a full-
factorial design. Confounding is when a factorial experiment is performed in more 
than one incomplete block (Collins, 2009). This implies that when the estimates of 
two experimental effects are indistinguishable, then they are said to be confounded. A 
confounded design, on the other hand, combines specific factors or variables into one 
factor or treatment level on purpose, which might save cost and improve the 
experiment. A confused design in the context of a dry season irrigation experiment 
may divide various irrigation timings and frequencies into one treatment level and 
compare this group to another treatment group with various fertilizer and crop variety 
combinations. Compared to a complete factorial design, this form of design may be 
more effective and use fewer resources, but it may also make it harder to interpret the 
data since the effects of the several components may be mixed together. The price of 
having fewer treatments is that some effects become confounded with blocks. Effects 
are confounded when information on such effects are sacrificed. The term “orthogonal 
array,” as it is sometimes used in practice, is imprecise. It correctly refers to designs 
that are orthogonal and balanced, hence efficient. It is also imprecisely used to refer to 
designs that are orthogonal but not balanced, and hence potentially inefficient. A 
design is balanced when each level occurs equally often within each factor, which 
means the intercept is orthogonal to each effect. The imbalance is a generalized form 
of nonorthogonality, which increases the variances of the parameter estimates. Despite 
the loss of information of some treatment combinations when a full factorial design is 
confounded, researchers still prefer the later design as it handles the cost and time 
problem associated with the earlier design. As regards to these issues, this study seeks 
to compare the full factorial to confounded design concerning the efficiency of the 
designs. 
Three-level designs are useful for investigating quadratic effects. The three-level 
designs are written as a 3k factorial design. The three-level design may require the 
prohibitive number of treatments, unfortunately, the three-level design is prohibitive 
in terms of the number of treatments, and thus in terms of cost and effort. A two-level 
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design with center points is much less expensive while it is still a very good (and 
simple) way to establish the presence or absence of curvature.  
However, the justification for the present study was based on the quest for 
diversification of the Nigerian economy into active agriculture and other non-oil 
sector across the nation. Hence, the need for experiment on growing wheat in the 
South Eastern Nigeria became necessary. Wheat in Nigeria is largely supplied from 
the Northern Part of the Country and the state of insecurity in the North has made it 
necessary for the authorities to encourage formers in other parts of the country to close 
the gap on food insecurity in the Country. Aside from the nutritious benefits of wheat, 
wheat production in an irrigated area helps improve soil quality, circulate nutrients 
and add nitrogen, break the cycle of annual and perennial weeds, protect the soil from 
soil erosion, distribute farms and get a good return on investments.   
Also, findings from available literature on the subject matter observed that the 
majority of the literature focused on a 2k factorial design while very few literatures 
focused on the 3n factorial design. It was observed that most of the researchers in this 
area employ the 2k designs over the 3k design because of its limitations in terms of the 
number of treatment combinations, time, financial constraints and efficiency.  Hence, 
the need for the present study to consider a full factorial design and also reduce the 
treatment combinations to be applied in the experiment by confounding to save 
experimental materials, cost, time and reduce experimental error.  
Hence, the aimed at comparing the 3k full factorial and 3k-p confounded design for 
wheat production in Anambra State with the following specific objectives: to group 
the treatment in a 33 full factorial experiment into various blocks using confounding, 
to test the significance of main effects and the interaction effects not confounded, to 
calculate the gain in precision when the 33 full factorial design is confounded, and to 
determine the best design between the full factorial design and the confounded design. 
 
MATERIALS AND METHODS 
Source of Data 
The data for this study were secondary data obtained from the Agriculture Department 
of Anambra State River Basin Authority (ARBA) in Anambra State. Dry season 
irrigation experiment was conducted by Anambra State River Basin Authority 
(ARBA) in which the effects of 3 factors (planting materials, seed rates in kg/ha, and 
row spacing in cm) were investigated on plant size. Planting was by drilling to a depth 
of 3 inches, irrigation was carried out immediately and thereafter subsequent irrigation 
was carried on a weekly interval until the maturity of the plants. Recommended 
fertilizer rate is 120kg/ha of urea (source of nitrogen (N) in fertilizer), 60kg/ha of P2O5 
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and applied at split dose, half at planting and the other half in 2 weeks after 
germination. 
Planting Materials:  
V1 – Local Variety 
V2 – R32-BB-PCBWH-98 
V3- Top’s’ NARO-CM3-PCBWH-1729 
Seed Rates: 

1. 50kg/ha 
2. 100kg/ha 
3. 150kg/ha. 

Row Spacing (in between rows) 
1. 15cm 
2. 25cm 
3. 35cm 

Data were collected by quadrant, seeds threshed and measured in weighed. All 
measurements are in kg/plot. 
 
Model Specification 
It can be seen that one of the factors is qualitative and the remaining are quantitative. 
Therefore, we could fit a quadratic model such as: 

2 2
0 1 1 2 2 12 1 2 11 1 22 2y x x x x x xβ β β β β β ε= + + + + + +                                                                                      

(1) 
Where, 
y is the response 
β’s are the model coefficients  

Suppose we let 
12 3 11 4 22 5  , ,β β β β β β= = = . 2 2

1 2 3 1 4 2 5, ,x x x x x x x= = = .  
Then we can have, 

0 1 1 2 2 3 3 4 4 5 5y x x x x xβ β β β β β ε= + + + + + +                                                                                             
(2) 

Which is a linear regression model, but the qualitative will have an impact, thus the 
statistical model in regression form is given as: 

2 2 2
1 2 3 000 100 1 010 2 222 1 2 3 1 2 3( ) ( )y x x x x x x x x x x xβ β β β ε= + + + + +  

2 2 2
000 100 1 010 2 222 1 2 3

ˆ ˆ ˆ ˆ( )E y x x x x xβ β β β= + + + +  
Since ( ) 0E ε = . 
The standard order for a 33 design is 
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(1),A , ,B , , , ,A , , ,A , ,B , , , , ,
, , , ,B , , B , , ,

L Q L L L Q L Q L Q Q Q L L L Q L L L L L L Q L L Q L L Q L

Q Q L Q L Q Q Q L Q L L Q Q L Q Q Q L Q Q Q Q Q

A A B A B B B A B C C A C C A B C A B C B C A B C
A B C C A C A C C A B C A C B C A B C A B C
 
(0, 1, 2) was used to code each factor at the various levels, hence, the treatment 
combination can be presented as follows: 000,100, 200, 010, 110, 210, 020, 120, 220, 
001,101, 201, 011, 111, 211, 021, 121, 221, 002, 102, 202, 012, 112, 212, 022, 122, 
222 
 
Estimation of Model Parameters 
The method of least squares is typically used to estimate the parameters of the model 
equation (Equation 2). We may write the model equation as: 

0 1 1 2 2 ...i i i k ik iy x x xβ β β β ε= + + + + +  

0
1

k

j ij i
j

xβ β ε
=

= + +∑ , 1, 2,...,i n=                                                                                                                       

(3) 

This can be written in matrix form as: 
y X β ε= +                                                                                                                                                            
(4) 

Where: 

1

2

n

y
y

y

y

 
 
 =
 
 
 


,

11 12 1

21 22 2

1 2

1
1

1

k

k

n n nk

x x x
X x x x

x x x

 
 
 
 =
 
 
 
 





 



, 

1

2

k

β
β

β

β

 
 
 =
 
 
 


, and          

1

2

n

ε
ε

ε

ε

 
 
 =
 
 
 


 

In general, y is an (n×1) vector of the observations, X is an (n×p) design matrix of the 
levels of the independent variables, 𝛽𝛽 is a (p×1) vector of the regression coefficients, 
and ε is an (n×1) vector of random errors. 
 
Statistical Design 
The 3k factorial design is a factorial arrangement with k factors each at three levels. 
One possible way to differentiate the factor levels in a 3k design is to represent the 
factor levels as 0(Low), 1(intermediate), and 2(high). 
A single replicate of the 3kdesign if considered requires so many treatments that it is 
unlikely that all treatments can be made or applied to the experimental units under 
uniform conditions. Thus, confounding in blocks is often necessary. Confounding in 
design of experiment is the act of influencing both the dependent variable and 
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independent variable thereby causing a spurious association. Confounding is 
necessary in design of experiment when controls do not allow the experimenter to 
reasonably plausible alternative explanations for an observed association between the 
explanatory and response variables.  
A confounding design equally involves a situation where by some treatment effects 
(main or interactions) are estimated by the same linear combination of the 
experimental observations as some blocking effects. In this situation, the treatment 
effect and the blocking effect are said to be confounded. Confounding is also used as a 
general term to indicate that the value of a main effect estimate comes from both the 
main effect itself and also contamination or bias from higher order interactions. 
The 3k design may be confounded in 3p incomplete blocks, where p< k. Thus, these 
designs may be confounded in three blocks, nine blocks, and so on (Montgomery, 
2012). 
 
The 33 Factorial Design 
Suppose there are three factors (A, B, and C) under study and that each factor is at 
three levels arranged in a factorial experiment. This is a 33 factorial design, and the 
experimental layout and treatment combination notation are shown below. The 27 
treatment combinations have 26 degrees of freedom. Each main effect has two degrees 
of freedom, each two-factor interaction has four degrees of freedom, and three factor 
interaction has eight degrees of freedom.  
The sums of squares may be calculated using the standard methods for factorial 
designs. In addition, if the factors are quantitative, the main effects may be partitioned 
into linear and quadratic components, each with a single degree of freedom. The two-
factor interactions may be decomposed into linear × linear, linear × quadratic, 
quadratic × linear and quadratic × quadratic effects. Finally, the three-factor 
interaction ABC can be partitioned into eight single-degrees-of-freedom components 
corresponding to linear × linear × linear, linear × linear × quadratic, and so on. Such 
a breakdown for the three-factor interaction is generally not very useful. 
It is also possible to partition the two-factor interactions into there I and J components. 
These would be designated AB, AB2, AC, AC2, BC, and BC2, and each component 
would have two degrees of freedom. As in the 32 designs, these components have no 
physical significance. 
The three-factor interaction ABC may be partitioned into four orthogonal two 
degrees-of-freedom components, which are usually called the W, X, Y, and Z 
components of the interaction. They are also referred to as the AB2C2, AB2C, ABC2, 
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ABC components of the ABC interaction, respectively. The two notations are used 
interchangeably; that is, 

( ) 2 2W ABC AB C=                                                                                                                                                 
(5) 

( ) 2X ABC AB C=                                                                                                                                                  
(6) 
( ) 2Y ABC ABC=                                                                                                                                                    

(7) 
( )Z ABC ABC=                                                                                                                                                     

(8) 
Note that no first letter can have an exponent other than 1. Like the I and J 
components, the W, X, Y, and Z components have no practical interpretation. They 
are, however, useful in constructing more complex designs. 
 
The General 3kFactorial Design 
The concept utilized in the 33factorial design can be readily extended to the case of k 
factors, each at three levels, that is, to a 3k factorial design. The usual digital notation 
is employed for the treatment combinations, so 0120 represents a treatment 
combination in a 34 design with A and D at low levels, B at the intermediate level, and 
C at high level. There are 3k treatment combinations, with 3k – 1, degrees of freedom 
between them. These treatment combinations allow sums of squares to be determined 
for k main effects, each with two degrees of freedom; �𝑘𝑘2� two-factor interactions, each 
with four degrees of freedom; and one k-factor interaction with 2k degrees of freedom. 
In general, high-factor interaction has 2h degrees of freedom. If there are n replicates, 
there are n3k – 1 total degrees of freedom and 3k(n – 1) degrees of freedom for error. 
Sums of squares for effects and interactions are computed by the usual methods for 
factorial designs. Typically, three-factor and higher interactions are not broken down 
any further. However, any h-factor interaction has 2h – 1 orthogonal two-degrees-of-
freedom components. For example, the four-factor interaction ABCD has 24 – 1 = 8 
orthogonal two-degrees-of-freedom components, denoted by ABCD2, ABC2D, 
AB2CD, ABCD, ABC2D2, AB2C2D, AB2CD2, and AB2C2D2. In writing these 
components, note that the only exponent allowed on the first letter is 1. If the 
exponent on the first letter is not 1, then the entire expression must be squared and the 
exponents will be reduced to modulus 3. To demonstrate this, consider 

2 2 2 2 4 2 2 2 2 2 2( )A BCD A BCD A B C D AB C D= = =                                                                                          
(9) 
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These interaction components have no physical interpretation, but they are useful in 
constructing more complex designs. 
 
Confounding the 3kFactorial Design 
When a single replicate of the 3kfactorial design is considered, the design requires so 
many treatments that it is unlikely that all 3k treatments can be made under uniform 
conditions. Thus, confounding in blocks is often necessary. The 3kfactorial design 
may be confounded in 3p incomplete blocks, where p < k. Thus, these designs may be 
confounded in three blocks, nine blocks, and so on. We shall illustrate the principles 
of confounding in 3k in 3p plots per block with the help of 33 experiments laid out in 
blocks of size 32=9. Let the three factors be A, B and C and the confounded 
interaction will be ABC2. The three levels of each of the factor be denoted by 0,1 and 
2 and a particular treatment combination be , , , 0,1, 2i j kx x x i j k = . 

Number of blocks per replication = 3 3k p− =  
Block size = 3 9p =  
Degrees of freedom confounded = 2 

Number of interactions confounded per replicate = 3 1 1
3 1

k p− −
=

−
 

The number of treatments in 3 blocks are determined by solving the following 
equations models 

1 2 32 0x x x+ + =                                                                                                                                                 
(10)  

1 2 32 1x x x+ + =                                                                                                                                                 
(11) 

1 2 32 2x x x+ + =                                                                                                                                                  
(12) 

The combinations in the blocks can be represented as presented in Table 1:  
Table 1: Block Layout 

Block 1 Block 2 Block 3 
A B C A B C A B C 
1 0 1 1 0 0 1 0 2 
0 1 1 0 1 0 0 1 2 
1 1 2 1 1 1 1 1 0 
2 0 2 2 0 1 2 0 0 
0 2 2 0 2 1 0 2 0 
2 1 0 2 1 2 2 1 1 
1 2 0 2 2 0 1 2 1 
2 2 1 1 2 2 2 2 2 
0 0 0 0 0 2 0 0 1 
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The general procedure is to construct a defining contrast 
1 2 2 ... k kL x x xα α α= + + +                                                                                                                                    

(13) 

Where iα  represents the exponent on the ith factor in the effect to be confounded and 

ix is the level of the ith factor in a  particular treatment combination. For the 3k series, 
we have 0,1, 2i orα =  with the first nonzero iα  being unity, and ix = 0 (low level), 1 
(intermediate level), or 2 (high level). The treatment combinations in the 3kfactorial 
design are assigned to blocks based on the value of L (mod 3). Because L (mod 3) can 
take on only the values 0, 1, or 2, three blocks are uniquely defined. The treatment 
combinations satisfying L = 0 (mod 3) constitute the principal block. This block will 
always contain the treatment combination 00…0 (Montgomery, 2012; Zimmer et al., 
2017).  
Thus, the 3k factorial design may be confounded in 3p blocks of 3k - p observations 
each, where p< k. The procedure is to select p independent effects to be confounded 
with blocks. As a result, exactly (3p – 2p – 1)/2 other effects are automatically 
confounded. These effects are the generalized interactions of those effects originally 
chosen (Montgomery, 2012). 
The goodness or efficiency of an experimental design can be quantified. Common 
measures of the efficiency of an (ND× k) design matrix X are based on the 
information matrix X’X. The variance-covariance matrix of the vector of parameter 
estimates 𝛽̂𝛽 in a least-squares analysis is proportional to(X’X)−1. More precisely, it 
equals 𝜎𝜎2(X’X)−1. The variance parameters 𝜎𝜎2, is an unknown constant. Since 𝜎𝜎2 is 
constant, it can be ignored (or assumed to equal one) in the discussion that follows. 
The diagonal elements of (X’X)−1 are the parameter estimate variances, and the 
standard errors are the square roots of the variances. Since they depend only on X 
(and 𝜎𝜎2), they can be reported by design software before any data are collected. An 
efficient design has a “small” variance matrix, and the eigenvalues of (X’X)−1 provide 
measures of its “size”. The process of minimizing the eigen values or variances only 
depends on the selection of the entries in X not on the unknown 𝜎𝜎2 parameter. 
The two most prominent efficiency measures are based on quantifying the idea of 
matrix size by averaging (in some sense) the eigenvalues or variances. A-efficiency is 
a function of the arithmetic mean of the eigenvalues, which is also the arithmetic 
mean of the variances, and is given by trace ((X’X)−1) 𝑘𝑘⁄ . A-efficiency is perhaps the 
most obvious measure of efficiency. As the variances get smaller and the arithmetic 
mean of the variances of the parameter estimates goes down, A-efficiency goes up. 
However, there are other averages to consider. D-efficiency is a function of the 
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geometric mean of the eigenvalues, which is given by|(X’X)−1|1 𝑘𝑘⁄ . Both D-efficiency 
and A-efficiency are based on the idea of average variance, but in different senses of 
the word “average”. In practice we usually use D-efficiency for two reasons. It is the 
easier and faster of the two for a computer program to optimize. Furthermore, relative 
D-efficiency, the ratio of two D-efficiencies for two competing designs, is invariant 
under different coding schemes. This is not true with A-efficiency. A third common 
efficiency measure, G-efficiency, is based on𝜎𝜎𝑀𝑀, the maximum standard error for 
prediction over the candidate set. All three of these criteria are convex functions of the 
eigenvalues of (X’X)−1 and hence usually highly correlated. 
For all three criteria, if a balanced and orthogonal design exists, then it has optimum 
efficiency; conversely, the more efficient a design is, the more it tends toward balance 
orthogonality. A design is balanced and orthogonal when (X’X)−1 is diagonal for a 
suitably coded X. A design is orthogonal when submatrix of  (X’X)−1, excluding the 
row and column for the intercept, is diagonal; there might be off-diagonal non-zeros 
for the intercept. A design is balanced when all off-diagonal elements in the intercept 
row and column are zero.  
These measures of efficiency can be scaled to range from 0 to 100 (for a suitably 
coded X): 

' 1

1100
(( ) ) /D

A efficiency
N trace X X k−− = ×                                                                                              

(14) 

1' 1

1100
( )

k

D

D efficiency
N X X −

− = ×                                                                                                           

(15) 

These efficiencies measure the goodness of the design relative to hypothetical 
orthogonal designs that may be far from possible, so they are not useful as absolute 
measure of design efficiency. Instead, they should be used relatively, to compare one 
design with another for the same situation. Efficiencies that are not near 100 may be 
perfectly satisfactory. 
 
RESULTS AND DISCUSSION 
 The result of the analysis obtained in Table 2 showed that only row spacing (i.e. 
factor B) is statistically significant at α=0.05 since p-value = 0.0468 is less than 
α=0.05 using the full factorial design.  
The result obtained in Table 2 showed that no main effect or interaction effect was 
statistically significant after confounding. Further result showed that there is also a 
13% gain in precision when we use the full factorial design over the confounded 
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design. Thus, there is no gain in precision when we confound which implies that some 
information is lost due to confounding. 
The result of the optimality presented in Table 4-7 showed that the full factorial 
design performs better than the confounded design and that the relative D-efficiency is 
0.94 which is close to 1. This indicates that the confounded design is slightly D-
efficient than the full factorial design and that does not give enough reason for us to 
say that the later design is better. 

 
Table 2: ANOVA table for the full factorial experiment 

 
 
 
 
 
 

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F0 P-value 

A, Seed Rates 14620.91318 2 7310.45659 0.3275 0.7236 
B, Row Spacing 15411.5905 2 77055.79525 3.4524 0.0468* 
C, Variety 117758.1170 2 58879.0585 2.6380 0.0905 
AB 180156.3856 4 45039.0964 2.0179 0.1213 
AB2 116001.8935 2 58000.94675 2.5987 0.0935 
AB 64154.49631 2 32077.24816 1.4372 0.2558 
AC 146436.4296 4 36609.1074 1.6402 0.1942 
AC2 51375.71631 2 25687.85816 1.1509 0.3319 
AC 95033.17993 2 47516.58997 2.1289 0.1392 
BC 48921.25285 4 12230.31321 0.5479 0.7021 
BC2 4206.1684 2 2103.0842 0.0942 0.9104 
BC 44715.08868 2 22357.54434 1.0017 0.3809 
ABC 76081.52932 8 9510.191165 0.4261 0.8946 
AB2C2 5360.492978 2 2680.246489 0.1201 0.8873 
AB2C 8427.661433 2 4213.830717 0.1888 0.8290 
ABC2 20525.97368 2 10262.98684 0.4598 0.6364 
ABC 41992.33743 2 20996.16872 0.9407 0.4032 
Error 602622.0017 26 22319.3334   
Total 1340708.22 53    
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Table 3: ANOVA table for confounded experiment (AB2C2 confounded) 

Source of Variation Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square F0 

P-
value 

A, Seed Rates 14620.91318 2 7310.45659 0.2886 0.7516 
B, Row Spacing 15411.5905 2 77055.79525 3.0418 0.0650 
C, Variety 117758.1170 2 58879.0585 2.3242 0.1178 
AB 180156.3856 4 45039.0964 1.7779 0.1636 
AB2 116001.8935 2 58000.94675 2.2896 0.1213 
AB 64154.49631 2 32077.24816 1.2662 0.2987 
AC 146436.4296 4 36609.1074 1.4451 0.2474 
AC2 51375.71631 2 25687.85816 1.0140 0.3766 
AC 95033.17993 2 47516.58997 1.8757 0.1734 
BC 48921.25285 4 12230.31321 0.4828 0.7481 
BC2 4206.1684 2 2103.0842 0.0830 0.9205 
BC 44715.08868 2 22357.54434 0.8826 0.4257 
ABC 70721.03634 6 11786.83939 0.4653 0.8275 
AB2C 8427.661433 2 4213.830717 0.1663 0.8476 
ABC2 20525.97368 2 10262.98684 0.4051 0.6710 
ABC 41992.33743 2 20996.16872 0.8288 0.4477 
Error 607982.4949 24 25332.60395   
Total 1340708.22 53    

 
 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 1
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2

× 100% 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1

𝑀𝑀𝑀𝑀𝑀𝑀
 

For full factorial design: 

𝐼𝐼 =
1

22319.3334
 

𝐼𝐼 = 4.48042 × 10−5 
For Confounded design: 

𝐼𝐼 =
1

25332.60395
 

𝐼𝐼 = 3.94748 × 10−5 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 113.5% 
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Table 4: Optimality Table for 33 full factorial design 
A-Optimality D-Optimality E-Optimality 

729 1.8014 × 1016 12934 
 

Table 5: Optimality Table for the confounded design 
A-Optimality D-Optimality E-Optimality 

1324 9.1198 × 1016 11584 
 

Table 6: Efficiency Table for 33 full factorial design 
A-Efficiency D-Efficiency 

0.1372 14.8 
 

Table 7: Efficiency Table for 33 confounded designs 
A-Efficiency D-Efficiency 

0.0755 15.7 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �
𝐷𝐷 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 1
𝐷𝐷 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2

�
1
𝐾𝐾

 

Where; K = 27 
Relative D-efficiency = 0.94 
 
CONCLUSIONS 
This study compared the performance of the 33 full factorial and 33-p confounded 
design for the dry season irrigation experiment.  The findings of the study showed that 
factor B (row spacing) has a significant impact on the design using the full factorial 
design while the no effect and interactions were found to insignificantly impact on the 
confounded design.  
It was found that the full factorial 33 experiment minimizes the average variance of the 
parameter estimates and minimizes the maximum variance of all possible normalized 
linear combinations of parameter estimates than the confounded experiment which 
was found to relatively maximize the information matrix than the confounded 
experiment but the confounded experiment which relatively maximizes the 
information matrix than the full factorial experiment. 
The confounded design can’t be said to be better than the full factorial design since 
there is about a 13% gain in precision when the full factorial design is used over the 
confounded design and since it was found to relatively maximizes the information 
matrix of the full factorial design to the confounded design with a value of 0.94 which 
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is close to 1. Hence, it is observed that confounding a full a factorial design does not 
necessarily make it a more efficient design, since some information is lost when we 
confound certain effects with blocks. 
Based on the findings from the present study, it is recommended that when comparing 
two competing designs, one should always bear in mind that the designs are model 
dependent. Also, full factorial 33 design is recommended for estimating A and E-
optimality for the dry irrigation experiment, while the confounding the design in 
blocks is recommended for estimating model for D-optimality. 
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