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ABSTRACT. 
The Computational theoretical techniques were applied in the investigation of Phonon 
Dispersion of Lead (Pb) and Palladium (Pd). The first principle technique makes use 
of the density functional theory as implemented by quantum expresso as well as 
interatomic force constant (IFC) techniques (Born-von Jarman) which was extended to 
a higher number of neighbors than what is available in the literature were employed in 
this research. The results obtained show that the local density approximation (LDA) 
phonon dispersion slightly overestimates experimental results whereas the generalized 
gradient approximation (GGA) gives a slightly lower frequency. However, there was a 
negligible improvement in the quality of fit in the lead when the ninth neighbor (1 - 
9NN) interaction was introduced. 
Keywords: Phonon, Quantum expresso, Eigen – value, Lead(Pb), Palladium(Pd) 
 
INTRODUCTION 
The physical properties of Lead(Pb) and Palladium(Pd) are of strong scientific interest 
– fundamentally as a highly correlated electronic system and technologically. Recent 
interest in hydrogen storage systems and nanoscale devices has highlighted the crucial 
role palladium plays in a wide range of systems. Hydrogen sensors based on Pd 
nanowires show both fast response and low power requirements. Recent experimental 
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work indicates that Pd leads provide ohmic contacts for nanotube field effect 
transistors, a feature crucial for large scale device integration. In addition to nanoscale 
applications, bulk palladium also presents interesting properties that have fascinated 
researchers for years. It possesses a high magnetic susceptibility and sits on the edge 
of magnetism. Perhaps due to this, no measurable superconductivity has been found in 
the system for any temperature. Phonon scattering events play a crucial role in both 
superconductivities in bulk systems and transport in nanoscale interconnects. In this 
work, we examine the phonon dispersion of lead and palladium from a first principles 
perspective. Recent advances in density functional perturbation theory (DFPT) have 
made it possible to examine the acoustic properties of materials at a level of accuracy 
previously reserved only for electronic properties. Prior to the development of this 
approach, researchers were forced to use a frozen phonon technique that required 
large supercells or phenomenological approaches that relied on numerous fitting 
parameters (Stewart, 2008). Lead is still widely used for car batteries, pigments, 
ammunition (shot and bullets), cable sheathing, weights for lifting, weight belts for 
diving, lead crystal glass, radiation protection and as a constituent of solder, type 
metal, bearing alloys, fusible alloys, and pewter. Palladium on the other hand is 
widely used in catalytic reactions in industry, such as in hydrogenation of unsaturated 
hydrocarbons, as well as in jewelry and in dental fillings and crowns. But the main use 
of palladium, along with rhodium and platinum, is in the three-way catalytic 
converters in car exhaust systems. 
The largest use of palladium today is in catalytic converters.  Palladium is also used in 
jewelry, dentistry, watch making, blood sugar test strips, aircraft spark plugs, surgical 
instruments, and electrical contacts. Palladium is also used to make professional 
transverse (concert or classical) flutes. As a commodity, palladium bullion has ISO 
currency codes of XPD and 964. Palladium is one of only four metals to have such 
codes, the others being gold, silver and platinum. Because it adsorbs hydrogen, 
palladium is a key component of the controversial cold fusion experiments that began 
in 1989. 
Solids, liquids and gases are made up of atoms which are in constant motion at all 
temperature even at absolute zero temperature (Kittel, 1996). The atoms in solids 
execute small oscillations with energy governed by the temperature of the solids. The 
small oscillations in crystals are known as lattice vibration; when atoms vibrate they 
emit phonons. Phonons are the packets of sound energy created by vibrations inside a 
material. Lattice dynamics originated in 1905, with Einstein’s confirmation, via 
history of Brownian motion, that atoms exist (Einstein, 1905; Einstein, 1906), Within 
two years, Einstein had shown, using Planck’s theory of radiation, that the 
temperature – dependence of the heat  capacity of solids could be explain through the 
quantization of atomic vibrations (Einstein, 1907).  
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Phonon dispersion relation in crystals may be determined either experimentally or 
theoretically. Most experimental techniques determine the frequencies of lattice 
vibrations by inelastic neutron scattering experiments (Kazanc and Ozgen 2008) or by 
thermal diffuse x-ray scattering experiments (Burkel et al, 1987 and Dorner et al, 
1987). Theoretical techniques focus on solving the Schrodinger wave equation (SWE) 
for a given lattice system and deriving the force constant (ie the second derivative of 
the total crystal potential energy with respect to atomic separation) of the system from 
which the phonon frequencies are calculated by generating and using the 
corresponding dynamical matrix. The dynamical matrix is the fourier transform of the 
force constant (Ruf et al 2001; Bencherif et al, 2011). 
The theoretical approaches are divided into broad groups, namely, the empirical (or 
phenomenological) and the ab initio (or first principles methods). The empirical 
methods make use of adjustable parameters to fit experimental data to construct 
empirical models. On the other hand, ab initio methods have no need for empirical 
fitting parameters, but they generally employ a variational approach to calculate the 
ground-state energy of a many-body system from which the force constant and the 
associated dynamical matrix are obtained for use in computing the phonon frequencies 
(Baroni et al, 2001). The major shortcomings of the empirical approaches are that they 
are not necessarily applicable to all types of solids, and their parameters do not 
contain conceptual simplicity (Srivastava, 1990). On the other hand, the ab initio 
methods are only suitable for investigating systems in their ground-state 
configurations, thus unsuitable for investigating excited systems (Dreizler and 
Gross,1990; Martin 2004). 
These methods use technique different from that employed in phenomenological 
models to determine the total energy in the crystal. The DFT which is basically a 
many electron theory (Dreizler and Gross, 1990) pictures the potential energy in the 
crystal as a functional of the electrons density. Through the choice of a basic ground 
state parameter of the system, say the many-electron density, a self-consistent 
calculation of the Kohn-Sham potential (Martin, 2004) is carried out iteratively until 
convergence that is employed as the potential energy in the Schrodinger Wave 
Equation (SWE) which is then solved for the phonon frequencies. 
The aim of this research is to obtain the phonon dispersions of two Face Centered 
Cubic (FCC) metals namely Lead (Pb) and Palladium(Pd) from accurately determined 
interatomic force constants (IFCs) using quantum expresso code, IFC approach up to 
at least sixth neighbour and compare phonons results with experimental data. 
 
THEORETICAL CALCULATION AND CONSIDERATIONS 
Adiabatic Approximation 
The adiabatic (Born-Oppenheimer) approximation allows one to decouple the motion 
of the atom (core) from the motion of the valance electrons as though the nuclei were 
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fixed in their instantaneous positions (Slater, 1963 and Ziman, 1965).  In a metal, the 
crystal is made up of ions and mobile valence electrons which interact with each other 
through Columbic forces. In other to construct the Hamiltonian for the ionic motion, 
which is the focus in the theory of lattice dynamics both the ionic coordinates and 
valence electron coordinates must be treated independently and this is made possible 
by the adiabatic approximation. 
The adiabatic principle states that the eight-states of the valance electrons adjust 
themselves instantaneously to the position of the ions in the vibrating lattice (Born and 
Oppenheimer, 1927; Scrivastava, 1990). This is made possible as the nuclear mass is 
much larger than electron mass; and also the ions have energy level spacing which is 
much smaller than those of electronic states. 
The Schrodinger equation for a system containing n electron and N nuclei can be 
represented as an Eigen value problem (Lin, 2005) 
 

( ) ( )NiniNini RRrrRRrr −−−−−−=−−−−−−Η ,, εψψ     (2.1) 

Where ψ is the wave function, ε  is the total energy in the system, iR are the thi  
electron and ionic coordinates respectively 
 The Hamiltonian (H) in equation (2.1) can be written as 
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Where iR is the position of the  thi  ion relative to the  thi  site in a bravais lattice, and  

ir  represents the position of the thi  electron. Here, the summation is taken over all the 
ions and valence electrons in the system. The first two terms denotes the kinetic 
energy of the ions and the electrons of masses M and m respectively. The third term is 
the bare coulomb interaction between the electrons; and the fourth term is the pair-
wise bare ion-ion interaction. While the fifth term is the bare ion-electron interaction 
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According to the adiabatic approximation we assume that the coordinates of the ions 
are instantaneously fixed. If ψ (r,R) is an eigen-function satisfying the Schrodinger 
equation for electrons then we may write: 
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( )RnΕ , is the energy eigen – value of the electron which depends on the instantaneous 
ionic coordinates. 
For the total Hamiltonian, we write the wave function as: 
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( ) ( ) ( )RxRrRr n ,, ψψ =        (2.4) 

If the ion Hamiltonian is 
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We then add ( )RnΕ  to it and put the total wave function to solve the Schrödinger 
equation  
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Where E is the total energy, evaluating the first part of equation (2.6) we obtain   
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Equation (2.7) remains true if we make the assumption that the equation  
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May be neglected; since the first term of the equation (2.9) results in the integral of 
the form: 
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Where en  is the total number of electrons and 
l

e

R
n
∂
∂  = 0 is the rate of change with 

respect of electrons in the crystals. The second term of equations (2.9) is small for 
electrons tightly bound to the ions, so that  
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Equation (2.10) is the product of M
m  and the kinetic energy of the electron in its 

motion round the ion at lR . This is small since M
m <1840 and of the order 410− or 510−

. 
From the derivations so far, the ionic and electron motions have been separated. The 
only electron-phonon interaction is the one due to transitions between electron states 
as the ions move. 
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Calculation of The Phonon Dispersions of Pb and Pd with One Atom Per Unit 
Cell 
The application of the Born-von karman theory (Born and Huang,1954) to fcc lattices 
have been described by many authors. Pb and Pd belong to the space group of 50h (Fm 
3m) with underlying point group 𝑂𝑂ℎ(m3m). In calculating the phonon dispersions, we 
start by assigning inter atomic force constant matrix to the first atom of a particular 
neighbor. This is achieved using the coordinates of the neighbors of a particular atom. 
The interatomic force constant αβφ is defined to be the force on the origin atom in the “

α direction when the atom moves a unit distance in the “ β direction. The force 
constant matrix ),0( lαβφ  is symmetric. 321 ,, lll are three non- negative integers with 

321 lll ≥≥ . We consider the metals:  Pb and Pd as cubic crystals of identical atoms of 
mass ( )m  with cubic side of length ( )a with coordinate axes along three tetrad axes x, 
y, z. 
 
PRESENTATION OF RESULTS 
The results of the phonon dispersion for Pb are presented in section 3.1 while the 
results of the phonon dispersion relation for Pd from interatomic force constants 
(IFCs) approach and quantum espresso code are presented in section 3.2. 
 
Phonon Dispersions of Lead(Pb) 

 
Figure 3.1.1: Calculated phonon dispersions for fcc-Pb compared to inelastic neutron 

scattering data (black circles) Dal corso (2008) 
 

Table3.1.1: Frequencies calculated from quantum espresso at selected points of the BZ for 
Pb. All frequencies are in THz 
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Pb                            a(a.u) XT XL WT WL LT LL 

EXP (a) 9.27 0.90 1.80 1.47 1.71 0.90 2.19 

LDA(b) 9.19 1.09 1.93 1.80 1.89 1.06 2.56 

GGA(b) 9.51 1.16 1.71 1.47 1.73 0.97 1.98 

a Dal corso (2008) 
b This work 

 
Figure  3.1.2: Calculated phonon dispersions for fcc-Pb from analytical approach using IFCs 

up to 9th neighbour 
 
 
Table3.1.2: Frequencies calculated analytically at using IFCs up to 9th  neighbour at selected 

points of the BZ for Pb. All frequencies are in THz 
Pb XT XL WT WL LT LL 

EXP (a) 0.90 1.80 1.47 1.71 0.90 2.19 
1-2N (c) 1.05 2.26 1.23 1.77 0.94 2.24 
1-4N (c) 1.04 2.09 1.43 1.92 0.82 2.21 
1-6N (c) 1.02 1.90 1.43 1.85 0.67 2.23 
1-8N (b) 0.94 2.06 1.53 1.84 0.90 2.11 
1-9N (c) 0.94 2.07 1.54 1.84 0.86 2.14 
a Dal corso (2008) 
b Cowley (1974) 
c This work 
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3.2      PHONON DISPERSIONS OF PALLADIUM (Pd) 

 
Figure  3.2.1: Calculated phonon dispersions for fcc-Pd compared to inelastic neutron 

scattering data (black circles) Miiller and Brockhouse (1971) 
 
 

Table3.2.1: Frequencies calculated from quantum espresso at selected points of the bz for  
Pd. All frequencies are in THz 

Pd a(a.u) XT XL WT WL LT LL 

EXP (a) 7.34 4.65 6.71 4.26 5.69 3.33 7.01 
LDA(b) 7.30 5.12 7.17 4.37 6.01 3.58 7.38 
GGA(b) 7.52 5.26 6.35 3.93 5.26 3.17 6.53 

 

 
a Miiller and Brockhouse (1971) 
b   This work 
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Figure 3.2.2: Calculated phonon dispersions for fcc-Pd from analytical approach using 

IFCs up to 9th neighbour 
 

Table3.2.2: Frequencies calculated analytically using IFCs up to 9th neighbour at selected 
points of the BZ for Pd. All frequencies are in THz 

Pd XT XL WT WL LT LL 

EXP (a) 4.65 6.71 4.26 5.69 3.33 7.01 
1-2N (c) 4.36 6.66 4.46 5.64 2.95 6.87 
1-4N (c) 4.62 6.74 4.22 5.60 3.21 6.95 
1-6N (c) 4.53 6.71 4.17 5.58 3.20 6.93 
1-8N (b) 4.56 6.72 4.18 5.59 3.26 6.94 
1-9N (c) 4.58 6.73 4.19 5.61 3.28 6.96 
a Miller and Brochhouse (1971) 
b Miller and Brockhouse  (1971) 
c This work  
 
DISCUSSION OF RESULTS 
The phonon dispersion curves of the Fcc metals; Pb, and Pd, have been calculated 
using the Born-von Karman model with different numbers of interacting neighbours 
and exchange functional and the calculated values compared with experimental 
results. The different branches of the phonon band structure follow from the Eigen 
values after diagonalizing the dynamical matrix. The phonon frequencies in the first 
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Brillouin zone were calculated along some high symmetry points and the current 
calculations show that from the gamma points, along the high symmetries R→X and 
R→L directions there are two branches of dispersion (Transverse  and Longitudinal) 
which later split into three branches along the X→W direction. By differentiating the 
phonon frequencies into two modes via acoustic longitudinal (LA) and Acoustic 
transverse (TA) at the Brillouin zone boundary, it is possible to characterize the high 
symmetry directions and identify which split corresponds to any of the modes. 
 
Phonon Dispersion of Lead (Pb) 
The phonon dispersion of lead (Pb) calculated from quantum espresso code and 
interatomic force constant (IFCs) compared with experimental in elastic neutron 
scattering data (Dal Corso, 2008) are shown in Figures 3.1.1 and 3.1.2. The 
experimental inelastic neutron scattering is shown as black circles; the red line are the 
dispersions calculated by GGA functional while the green lines are the LDA 
dispersions. In the density functional theory calculations carried out for Pb, the 
electron – ion was treated using ultra soft and Projector Augmented Wave (PAW) 
(Audouze et al, 2008) as initio pseudo potential, within the applied self-consistent 
method. The calculations are carried out within the local density approximation 
(LDA) (Perdew and Zunger, 1981) and generalized gradient approximation GGA 
(Perdew et al, 1996) for the exchanged and correlation energy using Quantum 
espresso code (Gionnozzi, et al, 2009). The pseudo-wave functions are expanded in 
plane waves with a kinetic cut-off of 55Ryd for both LDA and GGA. The integration 
over the Brillouin zone were performed in the reciprocal space with uniform K-point 
meshes of 10 x 10 x 10 and 11 x 11 x 11 points for LDA and GGA respectively. The 
self-consistency calculation was assumed to have converged when the difference in 
energy between subsequent iteration was 1.0 x 10 3− Ryds. Apparently Pb seems to be 
a relatively simple metal, with Fermi surface similar to free electron sphere perturb at 
Bragg planes by the lattice potential and several attempts to get its phonon dispersions 
with model pseudopotentials have been reported (Vosko et al, 1965; Bertoni et al, 
1974). In practice even modern ab initio methods have found difficulties with the 
lattice dynamics of Pb due to the presence of several anomalies and to the small 
values of the interatomic force constants that make more evident the errors due to the 
numerical and physical approximations (Dal corso, 2008). In Brockhouse et al, (1962) 
it was observed that the interatomic force constants necessary to fit the Pb phonon 
dispersions extend to a large number of neighbours, a fact attributed to the large dips 
in phonon frequencies at the X point. In lead (Pb) at the equilibrium geometry the 
LDA functional gives phonon dispersions higher than experiment and GGA functional 
gives higher frequencies than experiment at the XT, WL, LT points. At the XL, WT,and 
LL points it is found to give phonon dispersions which are close to experiment. The 
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analytical calculated phonon dispersions of Pb using inter atomic force constants 
(IFCs) approach of the second (1-2NN), fourth(1-4NN), sixth(1-6NN), eighth(1-
8NN), and ninth(1-9NN) nearest neighbour are shown in Figure 3.1.2 with the red 
lines, green lines, blue lines, purple lines and pink lines representing the 1-2NN, 1-
4NN, 1-6NN, 1-8NN, and 1-9NN respectively.  There negligible improvement in the 
quality of fit in the lead when the ninth neighbour (1-9NN) interactions were 
introduced. The phonon dispersions of the IFCs and LDA and GGA functional do not 
predict well the experimental phonons dispersions like other metals.  
 
Phonon Dispersions of Palladium (Pd) 
The phonon dispersion of Palladium (Pd) results from quantum espresso code and 
interatomic force constant (IFCs) compared with experimental in elastic neutron 
scattering data (Miiller and Brockhouse, 1971) are shown in Figures 3.2.1 and 3.2.2. 
The experimental inelastic neutron scattering data are shown as black circles, the red 
line are the dispersions calculated by GGA functional while the green lines are the 
LDA dispersions. In the density functional theory calculations carried out for Pd, the 
electron-ion was treated using ultrasoft ab initio pseudopotential, within the applied 
self-consistent method. The calculations are carried out within the local density 
approximation (LDA) (Perdew and Zunger, 1981) and generalized gradient 
approximation GGA (Perdew et al, 1996) for the exchanged and correlation energy 
using Quantum espresso code. The pseudo-wave function is expanded in plane waves 
with a kinetic cut-off of 50Ryd and 45Ryd for LDA and GGA functional respectively. 
The integration over the Brillouin zone were performed in the reciprocal space with 
uniform K-point meshes of 10 x 10 x 10 for both LDA and GGA respectively. The 
self-consistency calculation was assumed to have converged when the difference in 
energy between subsequent iteration was 1.0 x 10 3− Ryd. The LDA phonon 
dispersions of palladium have been calculated at equilibrium lattice constant and an 
overestimation similar to other metals was found. Some previous papers (Grabowski 
et al, 2007; Stewart, 2008) confirmed this finding and are in good agreement with the 
results obtained in this research, but some other researchers also found good 
agreement with experiment at the LDA level. The GGA dispersions underestimate 
experimental results. Also the LDA underestimates the lattice constant by 0.5% while 
GGA overestimates it by 2.5%. The analytical calculated phonon dispersions of  Pd 
using inter atomic force constants (IFCs) approach of the second (1-2NN), fourth(1-
4NN), sixth(1-6NN), eighth(1-8NN), and ninth(1-9NN) nearest neighbour are shown 
in Figures 3.2.2 with the red lines, green lines, blue lines, purple lines and pink lines 
representing the 1-2NN, 1-4NN, 1-6NN, 1-8NN, and 1-9NN respectively. The 
analytical phonon dispersion curve of Pd shows that the second neighbour forces(1-
2NN) gives lower frequencies at the transverse acoustic (T) branch about the X and L 
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points, at the transverse acoustic (T) branch about the W point it is found to give a 
higher dispersion than experiment. The frequencies of the fourth(1-4NN), sixth(1-
6NN), eight(1-8NN) and ninth(1-9NN) neighbour forces are closer to experimental 
results than those of Quantum espresso code.  
 
CONCLUSION 
For all the metals studied in this research the local density approximation (LDA) gives 
phonon dispersion slightly higher than experimental results while the generalized 
gradient approximation (GGA) gives slightly lower frequency.  
For Pb it was observed that the extension to 1-9th neighbor gave slightly close 
agreement with the experimental phonon dispersions when compared to the 1 – 8th 
neighbor at some symmetry points. Pb at point LL gave percentage errors of 2.2% and 
3.6% for 1 – 9th and 1 – 8th neighbours respectively. The phonon dispersion curve of 
lead shows that the inter-atomic forces are of very long-range nature. The Force 
constant for neighbor more distant than the fourth neighbor has distinctly smaller 
values. 
It has been shown for the first time that by extending our calculation from first to 
ninth neighbour for Pb, and Pd, there is an improvement in the phonon dispersion 
curve when compared with first to eight and fit to fifth neighbours of other researchers 
respectively. 
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