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ABSTRACT  
Fracture geometry and conductivity are critical parameters for fracture treatment 
optimization, especially in cases that close to unwanted zones either water-bearing or gas 
zones. This study investigates the Artificial Neural Network (ANN) model for hydraulic 
fracturing optimization. The workflow begins with an integrated ANN model, then sets of 
variable fracture parameters and formation rock properties were utilized for training and 
testing the ANN based on the most appropriate activation function, the number of hidden 
layers and the number of neurons. The ANN model considers a 59 real field data of hydraulic 
fracturing treatments across the western desert of Egypt. The proposed ANN trained based on 
pressure transient test analysis that was conducted on the real field data. The available data 
was divided as 70% for training, 15% for validation, and 15% for testing. The optimum 
number of hidden layers and neurons was achieved after several trials. The proposed ANN 
model result was promising as compared with the common fracture simulation software 
FracCadeTM. The cross plot of the actual fracture geometry parameters versus the predicted 
ANN outputs showed a good match with the correlation coefficient (R) for the whole data is 
0.93. Then the relative importance of the ANN input parameter on the fracture geometry 
optimization was employed by the Garson method. The result of this work shows the 
potential of the approach developed based on the ANN model for predicting the fracture 
geometry. 
Keywords: Artificial Barrier Fracturing, Artificial Neural Network, MATLAB, hydraulic 
fracture optimization. 
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NOMENCLATURE 

 
INTRODUCTION 
Hydraulic fracturing is usually utilized to create enhanced wellbore connectivity to help tight 
reservoirs to produce hydrocarbon. Several factors may be considered as risks to the success 
of fracturing treatment operations.  One of the risks arises in pay zone reservoirs that are near 
to a water-bearing zone. The chance of fracture growth into the water zone limits the 
stimulation options and decreases the possibilities of using hydraulic fracturing treatment to 
improve well productivity, thereby limiting the well's future production, decrease recovery 
factor, and often leading to lost recoverable reserves.  
Many of the wells at the western desert of Egypt are shut-in due to poor productivity and 
often the companies that used artificial lift produce with little recovery. In common terms, 
these are thought-about to be marginal wells and not worthy for specific attention [1]. In 
addition to several wells were to be fracture stimulated with a risk of growth through a nearby 
water zone. The productive pay of tight reservoirs is separated from underlying water zones 
by a weak or no stress barrier. The distance between the water bearing zone to the pay zone 
was 20 to 80 ft (Salah et al., 2016).  
Controlling the fracture height in such well conditions to stop the fracture growth into the 
underlying water zone becomes a significant challenge. This may gamble the post-treatment 
well productivity. Thus it becomes necessary to prevent fracture height propagation from 
growing into the neighboring water zone, to eliminate the risk of lost well productivity, then 
reserves.  
An Artificial neural network model was developed to predict the fracture geometry as output 
by using the backpropagation method for different cases in the western desert of Egypt 
(Mutalova et al., 2019). Based on several input data for interested zone rock properties, 
overlying and underlying formations, fracture design parameters, and well test data, it can 
optimize the fracture treatment especially in cases close to water-bearing zones. 
The objective of this study was to develop a new model to have the ability to  
 Predict and optimize the fracture height to limit the height growth into unwanted zones.   
 Predict the effective fracture half-length in tight reservoirs to optimize the fracture 
treatment  
 Calculate dimensionless fracture conductivity (FCD) for fracture treatment to maximize 
the well productivity. 
 Integrating all of the stress profile, fluid, proppant properties, fracture pumping 
parameters, and the previous well test data to optimize the upcoming fracture treatment. 

A/R”G        ABU ROASH G Formation PBU Pressure build-Up Test 
BHP Bottom hole pressure, [psi] P                                          Internal fracture pressure, [psi]    
Cl.G. Closure gradient, [ psi/ft] Q Fluid injection rate, [bpm]                                            
E Young’s modulus, [psi]                                                 WOC         Water oil contact 
F.G. Fracture gradient [ psi/ft] WON West of Nile  
Hf Fracture height, [ft]                                             W Fracture width, [in] 
ISIP        Instantaneous shut in pressure, [psi] Xf Fracturing half-length, [ft] 
K    Fracture permeability, [md]  �  Poisson ratio 
k    Formation permeability, [md] σmin Minimum in-situ stress, [psi]                                      
MAWHP    Max allowable wellhead pressure, 

[psi] 
n΄, k΄ Power-law fluid coefficients                                       

MD Measured depth, [ft] E ′ Plane strain modulus 
PNet Net pressure, [psi]                                                          σ(y)                                    Horizontal tectonic stress, [psi]       
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 Evaluate which parameter has a high effect on fracture geometry based on each input 
weight. 
 Give high accuracy outputs compared to commercial software, therefore eliminate the 
need for well testing if not available to conduct well testing. 
The neural network model has the ability to collect all of the above-desired characteristics 
because of its ability to handle complex and nonlinear problems (Mutalova et al., 1996). 
ANN can be trained to know how much the correlative pattern between variables, therefore 
can be used to predict outputs from new inputs parameter.  
 

 

Fig. 1- Definition of variables for fracture 
containment problem (Fung et al., 1987). 

 
Fig. 2- Hydraulic fracture propagation in multi-stress 

layers (Rahim and Holditch, 1993). 

 
LITERATURE REVIEW 
Over the years, several authors have proposed the optimization of hydraulic fracture 
treatment by optimizing the fracture geometry and conductivity to maximize well 
productivity. Usman et al., (Ahmed, 1984) provided a pseudo-3D model through the fracture 
mechanics equation with the assist of either Geertsma & Deklerk and Perkin & Kern 2D 
models for accounting fracture geometry. The feature of this model lies in the capability of 
integrating rock and fluid properties with fracture parameters of symmetry layers above and 
below the pay zone in the reservoir.   
Fung et al., (Fung et al., 1987) state that reservoir properties and tectonic stress are not 
symmetric and introduce mathematical fracture penetration formula for computing vertical 
fracture growth in homogeneous reservoirs with horizontal stress distribution as illustrated in 
Fig. 1. Eq. 1 can be used to solve for the pressure p, which will yield the fracture of height h, 
once the fracture height that satisfies Eq. 2 is obtained. ��� =  � ���  �(� − ��)� + ∑ (���� − ��) × �� ���������� − (−�) ��− ������� ��� ����� �  

….…………………………....……..(1)   �� =  ��� + ���   ……….....…………………………...…....(2) 
where m is 1 or 2 for the lower and upper tips, respectively, ��� = internal fracture pressure, 
  ��� = Tectonic Loading  
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Rahim et al., (1993) present a mathematical equation for computing the approximate value of 
fracture height either up or down growth that can be after that use as an input for the PKN-
2D model to evaluate the fracture half-length and dimensionless fracture conductivity. 
Rahim considers asymmetric layers where the stress difference between upper and lower 
layers is equal with a given value of net pressure and reasonable values of zones thickness, 
fracture toughness Fig. 2. 
For a given number of layers, the mathematical formula as following:      √��(���� − ����)� = � ����� − ���− � ����� − ����

���,�
�

���,�  

…………...…………………………………………………..(3) 
and  √��(���� − ����)�√� = � ����� ����� + � ����� ����� + �� ���

���,�
�

���,�  

…...…………………………………………………………..(4) �� =  � − �� + ��� ……………….……………..…….…..….(5) �� =  �� − ��………………..….……........….........…...….(6) 
where  ��= Upper fracture height,   ��= Down fracture height, 
 m = Number of upper layers in which fracture will propagate, 
  n = Number of lower layers in which fracture will propagate.  
 Yang et al., (2011) introduce an alternative technique to calculate fracture geometry by 
using the concept of Unified fracture Design (Economides et al., 2002) proppant number 
with the Pseudo-3D model. Yang started his approach by assuming net pressure value, then 
the fracture height was calculated by the equilibrium height calculation. The fracture height 
with proppant mass and permeabilities of reservoirs result in getting the value of proppant 
number which in turn evaluates the value of fracture half-length and width. The 2D fracture 
propagation model can be used to calculate the value of net pressure which was compared 
with the assumed value.  
Garavand et al., (2018) suggest a combination of a unified fracture design concept, a 2D 
model and a linear elastic fracture mechanic (LEFM) to calculate the fracture geometry. This 
combination called Modified Pseudo-3D Model.       
First, the linear elastic fracture mechanic used to estimate equilibrium fracture height related 
to pressure, in-situ stress, and fracture toughness distribution. Therefore, UFD with the 2D 
model was used to calculated fracture half-length and Pnet. This approach covers more 
variety of multi-layered reservoirs with real in-situ stress distribution than the Yang 
approach. Both approaches were programmed through MATLAB TM Software. 
    Table 1 presents the different approaches of the previous authors to optimize the fracture 
geometry and control fracture height from propagation into unwanted zones. There were 
several approaches such as Mendelsohn et al., (1984), Palmer and Luiskutty (1986), and Ahn 
et al., (2017) that present various models for hydraulic fracture propagation. All of these 
authors did not consider the artificial barrier mass proppant, proppant pack permeability, and 
proppant type effects in their approaches. 
Artificial Neural Network (ANN) model was developed to predict hydraulic fracture height, 
fracture half-length, and dimensionless fracture conductivity as outputs by using 
backpropagation for different cases in the western desert of Egypt and west of Nile fields. 
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DATA USED 
The real data used in this study were collected from different fields in the western desert of 
Egypt and the west of Nile. The data were divided into three categories: formation rock 
properties, fracture treatment pumping parameters, and pressure transient analysis data Table 
2. The real pressure data were measured from downhole memory gauges. Table 3 presents 
the data range for 59 hydraulic fracturing treatments. 
 
ANN MODEL DEVELOPMENT 
In order to build the ANN model for prediction fracture height, half-length, and 
dimensionless fracture conductivity, the model was passed through 4 stages as following 
(Elkatatny, 2018):   

 Data Preprocessing,  
 Normalizing data set,  
 Model learning,   
 Model evaluation. 

 
Data Preprocessing  
Table 2 illustrate the input data for ANN. Among 49 data sets as input parameter across 59 
well were including formation rock properties for an interested zone like in-situ stress, 
young's modulus and fracture toughness, formation data like permeability,  porosity and 
reservoir pressure, mini frac analysis data like net pressure, ISIP,  closure gradient and 
hydraulic fracturing parameters like pumping rate, gel load, proppant mass volume. 
 

Table 1: Different approaches for hydraulic fracture optimization 
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Normalizing data set 
A spatial database was built consisting of 59 real field data covering almost the western 
desert of Egypt and west of Nile fields. All explanatory factors for rock and fracture 
treatment properties were added into the database. Normalization indicates that all the 
connection weights and the neuron activation thresholds are initialized with small random 
values, to achieve consistent results through learning. This was performed by the following 
scaling rule (The Egyptian General Petroleum Corporation, 1992): ���� = ����� ����,�������,���� ����,��� ………...………..…….……………..(7) 
where ����,���, ����,��� are the max and min input values of inputs 
variables, whereas ����, ���� are the values of old and new 
variables, respectively.  
 
Model Learning   
Artificial Neural Network Methodology 
The algorithm of backpropagation in neural networks consists of the following sequence 
(Lek and Guégan, 1999): 
 The number of nodes (input, hidden, and output layer) is set relative to the number of 
input and out. 
 Learning rates and the maximum iterations (set all weights and thresholds to small 
random values) are initialized. 
 The activation function which interconnects input neuron to it is output by a mathematical 
equation. 
 Input values for the hidden nodes are determined based on Eq. 8: �� =  ∑ ��������� ………………..………………………(8) 
where �� is the input variable at the node I and ��� is the weight from input node i to hidden 
node j. 
 

Table 2:  ANN dataset input parameters 
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Table 3 : Real field data range for 59 fracture treatment 

 
 

Table 3 Real field data range for 59 fracture treatment (cont.) 

 
, Then the output was derived from the hidden nodes according to Eq. 9: 
 �� = ����� =  �������……………………..……………...……(9) 
where �� is the output variable from hidden node j. The same algorithm was employed to 
calculate the inputs to the output nodes. 
 The error term for the output node was calculated. 
 Iteration ending condition was defined when the network errors were larger than a 
predetermined threshold or the number of iterations was less than the maximum preset 
iterations, then the calculation process continued till one of these criteria was achieved. 
    In this study, a simple three-layered ANN network (one input layer, one hidden layer, and 
one output layer) was created by programming software MATLABTM to be suitable for this 
amount of input data. A cross-validation plot was applied to determine The most proper 
number of neurons in the hidden layer. It is clearly shown that the highest R value was 
achieved when the number of neurons in the hidden layer was 61 neurons.  
    Weights and biases of the network were then appropriately initialized and therefore the 
artificial neural network was subjected to a backpropagation training algorithm (Mutalova et 
al., 1996). ANN training and testing data involve the use of a total of 59 points, 40 datasets 
(70% of original data sets ) are used for ANN training while the other 19 datasets (30% of 
original datasets )  are used for model verification and testing. Table 4 illustrate the summary 
of artificial neural network data. 



 
Ahmed A. Elgibaly, Mohsen. G.K. El-Nouby and Mahmoud A.A. El-Fattah 

 
THE JOURNAL OF APPLIED SCIENCES RESEARCH, 7(1), 69-86 

 

 

Pa
ge

76
 

Table 4 :Neural Network parameters. 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3- The proposed ANN model architecture (Generated by MATLAB TM). 

 

Artificial Neural Training  
The ANN model was trained by backpropagation method by learning rate 0.001. Fig. 3 
presents the structure of the proposed ANN model used in this study with 49 input parameters 
and one hidden sigmoid layer with 61 neurons across this layer, then 3 outputs through a 
linear output layer.   
Appendix A illustrates the proposed  ANN training script. The correlation coefficient (R) for 
whole data matches 0.93 is considered acceptable to complete the learning process of this 
model. This value was calculated through 46 iteration that calculates the correlation 
coefficient output error for each lesson. Fig. 4 shows the regression analysis of the trained 
ANN model.  
 
Model Evaluation 
The accuracy of the neural network model is evaluated by using validation and testing data 
through several statistical error analysis including Mean Squared Error (MSE), Correlation 
Coefficient (R), Standard Deviation (SD), Root Mean Squared Error (RMSE), Average 
Percent Relative Error (APRE) and Average Absolute Percent Relative Error (AAPRE) (Fath 
et al., 2018 & Elgibaly and Osman, 2019). These statistical error analysis can be calculated as 
follow: 
1) Average percent relative error (APRE) ���� =  ��  ∑ APRE %����   ...........................................(10) 
Where ���� % =  �����.������.����. �� × 100,    i = (1,2,3 … . . , n) 
…………………….……….………………………….(11) 
where X���. and X����. are the actual value and predicted values from the model, respectively, 
and n is the number of the total dataset. 

Network structure              ANN parameter 
Input layer neurons 49 
Output layer neurons 3 
Hidden layer 1 
Hidden layer neurons 
Activation function 
Learning rate  

61 
Sigmoid (Tan-Sig) & 

Linear 
0.001 
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Average absolute percent relative error (AAPRE) ����� =  ��  ∑ |AAPRE %| ���� ……………….……....(12) 
 
 
Root mean square error (RMSE) ���� =  ���  ∑ �X���. − X����.������  ……...……..…..(13) 

2) Mean Square Error (MSE) ��� =  ��∑ (target� −  output�)�����  ………...…...…..(14) 
where target and output are the actual value and predicted values from model, respectively, 
and n is the number of the dataset. 
 
3) Standard Deviation  (SD) �� =  � ����   ∑ �����.� �����.����. ������ ………………..……(15) 
4) Correlation Coefficient  (R) � =  �� − ∑ �����.������.������∑ (����.���)�����  ………………...………(16) 

Where �� is the average actual values and can express as follows: �� =  ��  ∑ ����.����  ………………………...….……...(17) 
     
 
Statistical analysis values of the proposed ANN model for the prediction of fracture half-
length, fracture height, and dimensionless fracture conductivity are listed in Table 5. 
One of the strongest methods for ANN model performance evaluations is AAPRE. As is 
evident from Table 5, the proposed ANN model with AAPRE of 28.9% has a better 
efficiency compared to commercial software with AAPRE 43.07 %. Besides, the proposed 
ANN exhibited the highest correlation coefficients 0.902 compared to commercial software 
0.86. The higher accuracy of the proposed ANN model confirms that this model was 
successfully trained. 
Root Mean Square Error (RMSE) is another indicator of the rigidity of the proposed ANN 
model, as is obvious from Table 5, the proposed ANN model can provide a small value of 
RMSE rather than commercial software. So, from different statistical error analysis, the 
proposed ANN model outperforms the commercial software.  
 
 

Table 5 : ANN statistical error analysis comparison 

 

                      Software Error Calculation ANN Error Calculation 
Frac 
Parameter APRE % AAPRE % RMSE MSE SD R APRE %   AAPRE 

% RMSE MSE SD R 

Height, Hf -14.06 43.07 44.9 2023.38 0.5 0.86 -11.4 28.9 40.2 1621.7 0.38 0.902 
Half length, Xf 0.829 32.71 92.2 8506.16 0.3 0.88 10.3 19.8 62 3845.3 0.24 0.924 
FCD -6247.7 6247.7 532.1 283152 78.4 0.19 -0.51 60.2 7.7 60.241 0.81 0.891 
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Fig. 4- Regression of the proposed ANN model (Generated by MATLAB TM). 

 
RESULT AND DISCUSSION 
ANN model structure 
The total data set was divided into three data sets: training set, validation set, and testing set. 
More specifically, 30% of the whole dataset was randomly selected as the testing and 
validation sets and then utilized for comparison between the proposed ANN model and 
commercial software. 
This ANN is developed using the parameters provided in Table 2. One hidden layer is 
constructed, and the hidden layer has 61 neurons. Fig. 4 depicts the prediction results of the 
regression analysis for training, validation, testing, and all data.  
It is found that the difference in a correlation coefficient (R) between training and testing 
data sets is relatively small, which indicates that the ANN model training process is reliable. 
Moreover, it can be observed that the predicted fracture height, half-length, and FCD have a 
good match with the target values with an acceptable range of accuracy. The R of testing 
data set is estimated to be 0.88 indicating that the ANN model has a relatively strong 
predictive performance. 
A more statistical analysis values calculations are listed in Table 5. As can be seen that the 
standard deviation (SD) and correlation coefficient of the aforementioned dataset for fracture 
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height are 0.38 and 0.0.902 respectively. The average correlation coefficient for all the three 
outputs is 0.962 for training, 0.869 for validation, and 0.888 for testing, respectively. 
 
Comparison between ANN predicted data and commercial software 
The output parameters for fracture height, half-length, and fracture dimension-less 
conductivity were calculated by commercial software, then compared with ANN proposed 
model. The validation and test data around 18 real cases were used for this comparison.  
Fig. 7 shows The cross plots of ANN and FracCadeTM output parameters. It is observed that 
the ANN output parameters ( fracture height, half-length, and FCD) have more accuracy 
rather than commercial software outputs. Table 5 illustrate the error comparison between 
ANN and software. It is shown also that the ANN was less error compare to well test data 
than commercial software due to the following reasons:- 
 ANN model trained based on real well test data for different treatment jobs and at 
different formations of the western desert of Egypt rather than simulated stress profile for 
different commercial software, therefore model will achieve the highest accuracy than 
FracCadeTM software. 
 Besides, the ANN model includes harmonic average permeability approach (Kantzas et 
al., 2012) for calculated dimensionless fracture conductivity as it considers that the total 
pressure drop is equal to the sum of pressure drop across each bed Fig. 8, so there was a big 
difference between ANN and commercial software error results Fig. 7 (c,f). ∆� =  ∆�� + ∆�� + ∆��………………….…....…...….(18) �������� =  ������� + ������� + �������  ………….………......…(19) 

 
and  ���� =  ∑ ������∑ (��)�����  …………….…………………………..…(20) 

 
where q is the flowrate of the formation, k is the permeability of the formation, A is the 
cross-sectional area of the formation and μ is the viscosity of the fluid 
 ANN will calculate effective fracture half-length and actual dimensionless fracture 
conductivity FCD, however, any commercial software will calculate either total fracture half-
length or propped half-length and simulated FCD. 
   Integration between hydraulic fracture design, mini frac analysis, and well test data will 
give more confidence for the model compared to any commercial software. 
 
BoxPlot parameter effect 
The conventional data analysis such as plotting of each parameter versus the output was 
found to be very difficult to explain the relationship between the input parameters and the 
outputs. Therefore, a boxplot was used to identify this relationship (Mohamed et al., 2019).  
Fig. 9 presents the relationship between several rock properties, hydraulic fracture treatment 
parameters and artificial barrier parameters with fracture height growth. 
 
 
 
 
 



 
Ahmed A. Elgibaly, Mohsen. G.K. El-Nouby and Mahmoud A.A. El-Fattah 

 
THE JOURNAL OF APPLIED SCIENCES RESEARCH, 7(1), 69-86 

 

 

Pa
ge

80
 

 
 

 
 
Fig. 7-ANN and Software comparison for fracture height, fracture half-length and fracture conductivity. 

(a) Software fracture half-length; (b) Software fracture height; (c) Software fracture conductivity; (d) 
ANN fracture half-length; (e) ANN fracture height; (f) ANN fracture conductivity.  

 
 

 
Fig. 8- Harmonic average permeability (Kantzas et al., 2012). 

 
Several interesting observation was mentioned. First, Fig. 9 -a, b, d, and f illustrate that 
fracture height increased with the increase of pumping rates, main treatment mass volume, 
artificial barrier proppant type, and fluid rheology flow behavior presented in fluid gel 
loading respectively. 
Second, Fig. 9-c and e illustrate that fracture height decreased with the increase of 
permeability and stress contrast between overlying and underlying formations.  
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Fig 9-a shows greater fracture height with increasing pumping rates. Once the formation in 
situ stress is overcome and fracture initiation happens, the pump rate must be adequate to 
overcome the natural formation leak-off rate just to keep the fracture open. An additional 
pump rate is then needed to increase downhole pressure and promote further propagation of 
the fracture.  
Fig. 9-b shows a greater fracture height with increasing proppant mass volume. This means 
that as long as proppant mass volume was increased, the fracture height will grow into 
unwanted zones and cannot be containment. 
When the fracture grows into a formation of high permeability (high leak-off), it will be 
impossible for the hydraulic fracture geometry to penetrate through this formation. Fig. 9-c 
illustrates that as the formation permeability contrast between upward and downward zones 
increases the fracture height will be decreased. 
For more fracture height containment, high-density proppant was pumped before the main 
hydraulic fracturing treatment with high breaker concentration. This bank will help in 
arresting the downward movement of the fracture height to unwanted formations by 
increasing the in-situ stress differential above the unwanted zone (Garcia et al., 2001 & 
Mukherjee et al.,1995). Fig. 9-d shows that smaller proppant mesh the size will create a 
smaller value for proppant pack permeability. Therefore, developed more resistance for the 
main fracture treatment movement lead to increase half-length rather than fracture height.   
Depending on the formation stresses fracture height growth is controlled by regulating the 
pump injection rates or using a fluid with low viscosities to avoid exceeding a critical 
pressure that may cause excessive unwanted fracture height propagation the pay zone 
Warpinski et al., (1981). Fig. 9-e illustrates that one of the main parameters for fracture 
height containment is that the barrier in-situ stresses the contrast between the pay zone and 
the upward and downward formation layers.  
Fig. 9-f shows that decreasing fracture fluid viscosity leads to decreasing the net pressure, 
then decreasing the ratio of pnet/ Δσ Simonson et al., (1978). This concept enables better 
arresting of  fracture height growth to the unwanted formation, thus increasing effective 
fracture half-length in the pay zone. The consistency and stability test was validated by the 
rheology test for different gel loading concentrations to ensure that we have the proper one. 
 
Garson Algorithm 
Garson (Elgibal and Elkamel, 1998 & Zhou et al.,2015) introduce a method of partitioning 
the neural network connection weights to determine the relative importance of various input 
variable within the network. The connection weight of the ANN was utilized to determine 
the importance of each parameter. 
The details of Garson algorithm are given by the following equation: 

������ =  ∑ ��|�|�� ∑ |�|��,������� �|�|�������
∑ �∑ ��|�|�� ∑ |�|��,������� �|�|������� ������  ……….………...(21) 

Where ������ represents the percentage of influence of the input variable on the output. �� 
is the number of input parameters and �� is the number of neurons in the hidden layer. The 
term |�|��  is the absolute value of the weight in the neural network for the ���input variables 
and ��� hidden layer. The term |�|� is the absolute value of the output layer weight in the 
neural network for ��� hidden layer. 
Table 6 presents the relative importance of various input parameters on fracture height output 
from the ANN model.   
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Fig. 9-Boxplots of effects of fracture stimulation parameters and rock properties on fracture height 
growth. (a) Pumping Rate; (b) Job mass volume; (c) Permeability contrast; (d) artificial barrier prop 

type; (e) stress contrast; (f) Fracture fluid gel loading (Generated by MATLAB TM). 
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Table 6: Relative importance of various input parameter in ANN model (cont.) 

 
 
These results indicate that each input plays a great role in controlling fracture height 
according to each input weight, therefore optimizing hydraulic fracture design. In-situ stress 
contrast has a great contribution percent, followed by permeability contrast, fracture 
treatment proppant mass, net pressure value, artificial barrier proppant volume, and pack 
permeability, Young’s modulus, fracture toughness, and pumping rate. 
    Garson results in table 6 can easily answer the following equation:  
 How many parameters have a vital role in limiting the fracture height growth?  
 What is the magnitude of contributions for each parameter in controlling fracture height? 
 what can cause fracture height containment? 
The results of the Garson calculation can be summarized as follows: 
 Artificial barrier proppant pack permeability shows a relatively influence as proppant 
material will increase the in-situ stress contrast, therefore control fracture height growth. 
 Artificial barrier proppant mass volume has a relative impact on frac height growth but 
the great impact on fracture half-length. A full-length barrier placement yields the max 
effective fracture half-length, though it is impossible to place. 
 Fracture toughness can have a very significant impact on fracture growth. Consequently, 
contrasts in fracture toughness can form the most reliable barriers to height growth. 
 The effect of young’s modulus seems to be less important. A higher modulus layer tends 
to has a hindering effect when a fracture is approaching, whereas a lower modulus layer 
hinders the fracture height growth when the fracture in it.  
 Garson's results reflect the importance of net fracture pressure, so by reducing net fracture 
pressure (Pnet), will help to control fracture height growth (Talbot et al., 2000).  

      ���� = ∆� ≈ � ����� � ��������������  ����� � �����
……...…….....(22) 

where E is Young’s Modulus, n΄ and k΄ are Power Law fluid coefficients, Q is fluid injection 
rate, L is fracture length, � is Poisson’s ratio, and H is fracture height.  
  Some mechanisms to achieve this objective are: 
 Decreasing fracturing fluid viscosity by reducing fluid gel loading or using viscoelastic 
surfactant based fracturing fluids, or slickwater fracturing fluids that will be decreasing the 
fracture net pressure, therefore control fracture height. 
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 Using the Pillar fracturing technique with less pad volume and pumping rate would 
yield fewer net pressures compared to conventional fracturing treatment techniques. 
 Decreasing frac treatment pumping rate (Decreasing Pnet).  

CONCLUSION 
Utilization of the ANN approach for predicting the fracture height growth, therefore 
optimizing the fracture geometry and conductivity has been investigated in the present study.  
The ANN model has been applied on a total of 59 real field data sets obtained from the 
western desert of Egypt and west of Nile fields. The model was composed of several rock 
properties for different types of reservoirs and different hydraulic fracture techniques either 
by different pumping technique (Conventional or channel frac) or various products ( frac 
fluid or proppant type).  
Transient well test analysis data is applied also to improve the accuracy of the ANN model, 
then the Garson algorithm is used to conduct the multi-factor analysis. Based on the process, 
some conclusions can be drawn as follows: 
 New reliable Artificial Neural Network model trained based on real well test data for 
different treatment jobs, at different formations of the western desert of Egypt and west of 
Nile fields and for different reservoirs has been developed. The model utilizes better 
accuracy when compared with commercial software Table 5. 
 ANN was applied to perform the multi-factor analysis. Results showed that stress 
contrast, permeability contrast, artificial barrier proppant mass and back permeability, main 
fracture treatment proppant mass volume, and pumping rate are the main factors, 
significantly affecting the fracture geometry and conductivity. Therefore, the aforementioned 
factors should be focus to optimize the fracture treatment in the actual situation. 
 The artificial neural network model proved through Garson's calculation results the vital 
role for artificial barrier technology for either control fracture height growth into the 
underlying unwanted water-bearing zone or increasing the effective fracture half-length to 
maximize well productivity. 
 The application of the ANN model in the estimation of effective FCD showed a good 
correlation coefficient of about 0.89, since it accounts for the harmonic average permeability 
approach, whereas the commercial software showed 0.197 Fig. 7-c, f. 
 ANN will provide the effective fracture half-length and actual dimensionless fracture 
conductivity FCD, however, any commercial software will calculate either total fracture half-
length or propped half-length and simulated FCD. 
 Lacking detailed geomechanical properties, the ANN model is the best candidate for 
fracture design. In such a case, the additional effort to run a simulation run with commercial 
software is not rewarded with higher accuracy in predicting fracture geometry if critical input 
parameters are unknown. In particular, in cases that close to water-bearing zones.  
 The capability of the ANN model has been significantly improved by increasing hydraulic 
fracturing jobs, therefore increase model efficiency. 
In future work, applying the radial basis activation function (Salem et al., 2018) to predict 
fracture geometry and conductivity, then compare the result with the multi-layer perceptron 
(MLP) algorithm till getting the accurate neural model that depicts the fracture dimensionless 
conductivity, half-length, and fracture height. 
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