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Abstract 
Gas lift is one of the most widespread methods of artificial lift technologies used when wells’ 
production rate drops below the economic limit. Gas Lift is employed to maintain the 
production above the available limit by means of injecting gas into the tubing through the 
casing–tubing annulus and a gas lift orifice installed in the tubing. Gas lift has been widely 
used in the oil fields that suffer from sand production. It is also used in deep and deviated 
wells and on offshore platforms. Lifting costs for a large number of wells are generally low. 
However, capital costs of compression stations are very high, so it is necessary to optimize 
gas lift wells by determining the optimum gas lift injection rate and optimum oil rate for each 
well. In this paper, conventional nodal analysis models using Pipesim software were used to 
predict the optimization parameters based on wells flowing survey, reservoir and well 
parameters and calculations of multiphase flow behavior. Artificial neural network (ANN) 
models were also used based on gas lift databases and gas lift monitoring systems. ANN 
models were trained to obtain the optimum structure and then tested against pipesim models. 
Also, this paper presents a new theory about the relative importance of gas lift system input 
data in predicting optimum parameters of gas lift system. It has been concluded that ANN has 
an excellent competing ability for gas lift optimization prediction compared to conventional 
methods and can be used interchangeably. This technique can considerably help in the 
immediate optimal design of gas lift wells. 
Keywords:Gas Lift Performance and Optimization, Prediction, Artificial Neural Network, 
Optimum Oil Rate, Optimum Gas Lift Rate, Pipesim, Matlab. 
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Nomenclature 
AAPRE 
ANN 
APRE 
G/L 
GLR ��(�p) 
Ipj 

Max. PRE 
Min. PRE 
MSE nh np 
Oj 

Pinlet 

Average Absolute Percent Relative Error 
Artificial Neural Network 
Average Percent Relative Error 
Gas Lift 
Gas-Liquid Ratio (SCF/STB) 
Importance of input variable (�p) 
Pth Input weight in jth

 hidden layer 
Maximum Percent Relative Error 
Minimum Percent Relative Error 
Mean Squared Error 
Number of neurons in the hidden layer 
Number of input variables 
Output layer weight for jth

 hidden layer 
Inlet Pressure (Psi) 

PLT 
Pnode 

Poutlet 

Psep 

PVT 
Pwh 

qg 

R 
R2 

RMSE 
RP 

SD 
SSD 
∆P 

Production Logging Tool 
Node Pressure (Psi) 
Outlet Pressure (Psi) 
Separator Pressure (Psi) 
Pressure, Volume, Temperature 
Wellhead Pressure (Psi) 
Gas Lift Injection Rate (MMSCFD) 
Correlation Coefficient 
Correlation Coefficient Squared 
Root Mean Squared Error 
Average Reservoir Pressure (Psi) 
Standard Deviation 
Slide Sleeve Door 
Pressure Drop (Psi) 

    

Introduction 
The operation of gas lift well resembles that of a naturally flowing well. Gas is injected into 
the tubing through a gas lift valve at certain depth and the increased gas/liquid ratio from the 
valve to the surface causes a decrease in the hydrostatic pressure gradient in the tubing, 
hence, decreases the bottom hole pressure. The only difference between this type of operation 
and a flowing well is that the gas-liquid ratio changes at injection point in the tubing for the 
gas lift well. A gas lift well schematic and pressure traverse is shown in Figure 1.  
   There is an optimum GLR that will minimize the pressure drop over the tubing at a given 
liquid flow rate. Too much gas increases the pressure drop because friction effects increase. 
One, therefore, expects that for a producing well there will be an optimum GLR at which gas 
can be injected to maximize the oil production rate. 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Gas Lift Well Schematic 

If gas lift rate is gradually increased, the production rate initially increases because the fluid 
density is reduced. However, as the gas injection rate is increased further, pressure losses due 
to friction become more crucial, and the production rate starts to decline as shown in Figures 



 
Moataz El-Tantawy, Ahmed Elgibaly and Mohsen El-Noby 

 
THE JOURNAL OF APPLIED SCIENCES RESEARCH, 7(1), 41-68 

 

 

Pa
ge

43
 

2 & 3. Figure 4 represents another method to determine the optimum gas lift rate (or optimum 
GLR) which is to draw outflow curve with different G/L rate (or GLR) and determine the rate 
at which the outflow curve intersects the inflow curve at maximum oil production rare, this is 
the optimum G/L rate (or optimum GLR). According to the lift gas availability, the 
compression cost of the gas, and the income of the oil sale, the economic optimum injection 
rate may be less than that required to obtain the maximum oil rate. 
   In this paper, the gas lift optimization is done using conventional nodal analysis using 
Pipesim software and new artificial neural network models to compute the optimal values of 
gas injection rate and oil rate of a gas lift production system. This work utilizes test data of 
Egyptian gas lift fields for both Pipesim and ANN models then compares the results of the 
two methods.   
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Figure 2: The Optimal Gas Lift Rate 

Figure 3: The Optimal GLR Point 
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Literature Review 
   Neural network research can be followed back to 1943 once the first artificial neuron was 
proposed by Warren McCulloch and the Walter Pits. But the technology existed at that time 
was an obstacle against achieving more progress. Rosenblatt (1957) designed the perceptron 
(neuron with weighted inputs). Widrow (1962) designed a network called Adeline. After that, 
the neural network's research stopped for twenty years (Hertz et al., 1991). Then, Hopfield 
(1982) introduced new algorithms, like backpropagation. Since then, neural network 
applications have been widely expanded (Mohaghegh, 2000).  
  ANNs have been used to solve complex problems in the petroleum industry, especially the 
problems that cannot be solved using conventional modeling tools. The applications of ANN 
in the petroleum industry can be found in its four branches: Exploration, Drilling, Reservoir 
and Production. Here are some examples from literature of ANN applications in Production 
branch: Thomas & Pointe (1995) used ANNs to identify conductive fractures. A. Elgibaly et 
al., (1998) used Neural Networks in determination of Optimal Hydrate Inhibition Policies. 
Faga, & Oyeneyin (2000) used ANNs to get grain size distribution for gravel-pack 
completion. Salehi et al., (2009) used ANNs to predict casing collapse issues. Khan et al., 
(2018) utilized ANNs to forecast water saturation in complex lithologies. Tariq (2018) 
employed ANNs in bottom hole flowing pressure prediction. Olabisi et al., (2019) used ANN 
for Prediction of Hydrate Formation Temperature.  
   Also, ANN has many applications concerning gas lift fields. Khamehchi et al., (2009) used 
ANN to predict gas lift parameters (gas injection rate and depth of injection). Ranjan et al 
(2015) used ANN for Gas Lift Optimization. Shokir et al., (2017) used ANN and integrated 
production modeling in optimizing of Ras Shokir gas lift field in the Gulf of Suez in Egypt. 
Khan et al., (2020) used ANN for Oil Rate Prediction in Artificial Gas Lift Wells.  
 
Conventional Methodology: Nodal Analysis 
Nodal analysis was first introduced by Gilbert in 1954 and was discussed by Nind in (1964) 
and Brown in 1978. Nodal analysis requires selecting a node and calculating its pressure, 
starting at the constant pressure in the system such as Average reservoir pressure (RP) as the 
inlet pressure and either wellhead pressure (Pwh) or separator pressure (Psep) as the outlet 
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pressure. Any point in the system may be selected to be the required node. The expressions 
for the inflow and the outflow of the node can be expressed as:   ����� = ������ − ∆�(�������� ����������) = ������� + ∆�(���������� ����������)        

(1) 
   The Pipesim software is a useful tool for simulating actual production systems and 
evaluating their responses to different production cases, challenges, and the impact of various 
solutions on production systems before field implementation.  
   To perform nodal analysis via Pipesim software, some data first were gathered to build well 
models. These data are: the wellbore diagram including (tubing size, well depth, end of 
tubing depth, downhole equipment such as packers and SSDs), well deviation survey 
indicating measured depths and true vertical depths, artificial lift system used in the well 
which in our case is gas lift system and its parameters (valve type, injection depth and surface 
gas injection pressure). Also, one important data set is the reservoir producing zone including 
(perforation depth, productivity index, reservoir pressure and temperature, and PVT 
properties of the produced fluids). The multiphase flow correlations were selected based on 
well-flowing surveys or PLT data, in these models, Hagedorn and Brown correlations were 
used for vertical flow, and Beggs and Brill correlations were used for horizontal flow as they 
were found to be the most convenient correlations for gas lift wells, then nodal analysis tool 
was used to give the optimum oil rate as in Figure 5. Also, the system analysis tool in 
Pipesim was used to determine the optimum gas lift injection rate.  
 

 

Artificial Neural Network 
ANN is a model that processes information imitating the mechanism by which biological 
nervous systems process information. It consists of a number of connected processing 
elements (neurons) that work together to solve specific problems. Neural networks can be 
used to understand patterns and discover trends that are too complex to be noticed by either 
humans or other computer techniques. 
Biological Basis 
ANNs are generally presented as systems of neurons organized in different layers and 
neurons of each layer are connected through weights. These “neurons” can be trained and 

Figure 5: Example of Nodal Analysis Using Pipesim Software 
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used to work out values from inputs, and are capable of machine learning and pattern 
identification (Kumar, 2012). The understanding of ANN can be made easier by 
understanding the mechanism of biological neuron networks. 
   The basic component of the biological neural network is a neuron. A neuron mainly 
consists of three parts: dendrites, body (soma), and axon (Figure 6). Dendrites are the tree-
like structure that receives the signal from neighboring neurons. Axon is a thin cylinder that 
passes the signal from one neuron to another. At the end of the axon, the contact to the 
dendrites is made through a synapse (synaptic connections). The signal is received by the 
dendrites, transported to the neuron cell body where they are processed and, converted to 
output, and transmitted through the Axon to the next neuron. 
 

 
 

 
ANN Structure 
ANNs are developed based on mathematical models with the following assumptions 
(Mohaghegh, 2000): 

1. The information is processed through nodes (neurons). 
2. There are connecting links between the neurons that allow the information to pass 

through. 
3. Each connection link has its weights. 
4. Once the inputs received by the neurons, the neurons will apply an activation function 

to calculate the outputs. 
Figure 7 shows an artificial neuron, the outputs from other neurons are multiplied by their 
weights and enter the neuron as inputs. These inputs are then summed and the activation 
function of the neuron is applied which leads to an output. An artificial neural network 
consists of one input layer, one or more hidden layers that extract features from the data, and 
one output layer.  

Figure 6: Two Bipolar Neurons (After Mohaghegh, 2000). 
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Figure 8: The Strategy of Neural Network. 

 

 
Figure 7: Schematic of Artificial Neuron (After Mohaghegh, 2000) 

 
ANN Strategy 
Neural networks receive data, train themselves via learning rule to recognize the patterns in 
this data, and then predict the outputs for a new set of similar data (Figure 8).  
 

 
 
  
The most widely used network is known as the Feed Forward Back Propagation Neural 
Network (which is in use in this paper). This type of neural network is excellent at prediction 
and classification tasks. Neural networks require the use of training patterns and involve a 
forward propagation step followed by a backward propagation step. The forward step sends 
an input signal through the neurons at each layer computing of an output value. This output is 
then compared with the desired output and the error is calculated and back-propagated 
through the system to modify the weights which control the network.  
 
Adopted Methodology 
Data Acquisition 
Adopted ANN in this work, depends primarily on wells’ actual test data obtained from test 
separator and measuring devices installed on both flowlines and gas lift lines. Also, because 
ANN can work with incomplete information and has fault tolerance when dealing with data 
with great uncertainty which is considered a great advantage of ANN over analytical 
conventional methods, downhole data obtained from static and flowing surveys, production 
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logging tools (PLT) and reservoir rock and fluid properties obtained from PVT lab analysis 
and core lab analysis were used in this work nevertheless the deficiency of regular bottom 
hole flowing surveys and uncertainty of downhole data.  
In this paper, 11144 data points of 30 elements were gathered, investigated for inconvenience 
and checked, 28 elements were selected as inputs and 2 elements were selected as outputs 
representing: oil flow rate (BPD), Gas lift rate (MMSCFD). The minimum and maximum 
values of the input parameters used in the developed ANN are listed in Table 1.  
This data set was randomly divided into 70% for training, 15% for validation, and 15% for 
the primary test. Training data are used to improve the network according to their error. 
Validation data are used to evaluate network generalization, and to stop training when 
generalization stops improving. Test data do not affect training, so they provide an 
independent measure of network performance during and after training.   
 

Table 1: Minimum and Maximum Values of the Input and Output Variables of the Developed 
ANN 

 

ANN Design and Training 
The optimum architecture of the developed ANN was determined by trial and error. The 
parameters varied were: training function, transfer function, number of hidden layers, and 
number of neurons in each layer. The optimum number of neurons in each layer depends on 
the complexity of the problem. If the number of neurons is too few, the algorithm does not 
converge to a minimum during the training. At the opposite, too many neurons result in over-
fitting of the data causing poor performance. 
The developed neural network contained 28 input variables, one hidden layer with 10 neurons 
and 2 output variables. Log-Sigmoid function (logsig) was used as a transfer function in the 
hidden layer. The linear function (purelin) was used in the output layer of the network. The 
training algorithm used is Levenberg-Marquardt (trainlm), this algorithm typically requires 
more memory but less time. Training automatically stops when generalization stops 
improving, as indicated by an increase in the mean square error of the validation samples. 

Parameter Min.  Max. Parameter Min. Max. 
Well Head Pressure (Psi) 50 650 Reservoir Temperature (°f) 130 280 
Flow Line Pressure (Psi) 40 440 Bottom Hole Flowing Pressure (Psi) 125 4349 
Flow Line Temperature 

(°c) 8 95 Productivity Index (STB/Psi) 0.0502 42.98 

Separator Pressure (Psi) 36 420 Reservoir Porosity (percent) 8 27 
Annulus Pressure (Psi) 0 1350 Reservoir Permeability (md) 1.4 700 
Flow Line Length (m)  654 11161 Oil Gravity (API) 24 45 

Choke Size, (1/64 in) 24 128 Formation Gas-Liquid Ratio 
(SCF/STB) 240 10000 

Water Cut (Percent) 0 98.3 Gas Gravity 0.712 0.814 

Kick-off Point (m) 350 3616 Oil Formation Volume Factor 
(RB/STB) 1.012 5 

Inclination (°) 0 65 Oil Viscosity (cp) 0.1 0.453 
Gas Injection Depth (m) 320 3406 Bubble Point Pressure (Psi) 1032 5511 

Orifice Port Size (in) 0.125 0.5 Gas Formation Volume Factor 
(RB/MSCF) 0.852 3.18 

Reservoir Depth (m) 350 3616 Gas Viscosity (cp) 0.0146 0.0285 
Net Pay Thickness (m) 1.5 46 Gas Lift Rate (MMSCFD) 0 3.8 
Reservoir Pressure (Psi) 491 4900 Oil Flow Rate (BPD) 2 1947 
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Figure 10: Performance of the Developed ANN 

The architecture was retrained many times (at least 3 times) till obtaining the best results 
which were saved for further testing. Figure 9 shows the optimum architecture for gas lift 
optimization.  

 
 

 
There are many parameters used to evaluate the trained neural network. Mean squared error 
(MSE) is used to measure network performance as in Figure 10. Figures 11 & 12 show the 
error histogram of oil rate and G/L rate outputs respectively, it is shown that 41% of oil rate 
output data error lies between -10 and 10 BPD and 78 % lies between -30 and 30 BPD. Also, 
26% of G/L rate output data error lies between -0.1 and 0.1 MMSCFD and 61.4 % of G/L 
rate output data error lies between -0.3 and 0.3 MMSCFD. Regression (R) values measure the 
correlation between outputs and targets, a close relationship has R value close to 1, and a 
random relationship has R value close to zero. R values of training, validation and testing 
data are 0.99687, 0.99675 and 0.99677 respectively, also, all input data have regression value 
of 0.99683 as in Figure 13. These parameters indicate efficient trained neural network which 
enables proceeding to the next step.  
 

 
 
 

 

Figure 9: The Neural Network Architecture 
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Figure 12: Error Histogram for G/L Rate Outputs of the Trained ANN 
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Figure 13: ANN Regression Curves (Predicted Outputs Versus Targets) 

 

 
Testing the Trained Network    
After performing the first test with the developed ANN model, 50 points were used as a 
secondary test for final approval of the model efficiency in predicting optimum oil rate and 
the optimum gas injection rate. These data are given in Tables 2 & 3. Figures 14 &15 show a 
good match between the predicted and measured oil rate and gas lift rate of the second test. 
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Table 2: Points Used as a Secondary Test for the Developed ANN Model  
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1 100 70 10 40 620 1484 64 0.7 2000 27 3152 0.125 3277 6 955 
2 200 180 30 170 580 666 128 11 2400 26 2004 0.25 3387 1.5 3600 
3 230 220 80 165 1020 4104 128 78.5 2000 36 1150 0.25 3585 9 4130 
4 220 200 30 165 620 1558 128 30 2905 0 2886 0.25 2905 17 1277 
5 70 50 30 40 750 3327 128 6 3510 0 2887 0.25 3510 25 1692 
6 280 195 94 170 950 966 128 92 3616 0 1038 0.188 3616 4.5 4900 
7 200 180 15 165 870 5166 128 1 2272 60 2702 0.125 3216 38 1853 
8 230 195 34 170 500 4660 128 24 3038 0 2977 0.25 3038 12 2742 
9 120 80 35 40 380 3160 64 1 3057 20 3406 0.188 3473 44 1200 
10 430 420 44 380 1100 654 128 95 2303 29 833 0.25 3539 29 3655 
11 300 250 15 170 1090 4911 128 26 2937 0 2828 0.188 2937 15 1578 
12 105 100 20 40 870 2020 128 1 2009 61 3088 0.25 3121 20 1106 
13 180 165 52 40 780 7906 128 38 2021 65 3125 0.5 3171 46 3000 
14 55 45 30 40 380 1625 128 0.2 1935 60 3038 0.375 3158 13.5 3643 
15 100 80 25 40 780 4742 128 1.8 2243 35 2736 0.313 2988 7 491 
16 160 100 30 40 980 5086 128 0.2 3023 0 2805 0.188 3023 7.5 1600 
17 120 90 10 40 650 11161 128 65 800 25 2848 0.188 3017 31 1421 
18 85 75 130 40 900 1452 128 81 1800 28 2800 0.25 3077 8 2077 
19 115 105 132 40 725 668 128 6 2000 30 2200 0.125 3200 10 1550 
20 145 135 123 40 1074 4527 128 17 2015 35 1500 0.125 3540 9 1620 
21 128 118 128 40 930 1568 128 6 3000 0 2700 0.125 3000 17 1282 
22 93 83 126 40 1385 3357 128 6 3600 0 2900 0.125 3600 15 1720 
23 110 100 130 40 1070 956 128 85 3700 0 2300 0.188 3700 7.5 2780 
24 110 100 152 40 920 5186 128 29 2280 60 2500 0.25 3300 38 2310 
25 115 105 165 40 1350 4650 128 90 3000 20 2977 0.25 3050 12 1920 
26 163 153 130 40 924 3157 128 28 3057 20 3406 0.188 3473 44 1540 
27 105 95 139 40 1150 685 128 63 2100 30 1500 0.125 3550 25 2700 
28 140 130 100 40 1250 4851 128 53 2937 0 2828 0.188 2937 15 2730 
29 160 150 160 40 1280 2058 128 23 2009 61 3088 0.25 3121 20 2700 
30 130 120 120 40 773 7856 128 4 2021 65 3125 0.5 3171 46 1640 
31 300 290 140 170 1250 1856 128 74 1935 60 3038 0.313 3158 13.5 3100 
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32 180 175 49 170 700 4865 128 92.3 360 0 326 0.313 360 15 1700 
33 160 150 53 140 800 5008 128 95.3 351 0 330 0.375 351 20 1700 
34 140 130 49 120 710 12846 128 93.9 357 0 326 0.188 357 16 800 
35 255 242 31 229 720 1484 128 80.8 364 0 334 0.125 364 3 1100 
36 140 130 51 123 760 666 128 92.6 380 0 325 0.25 380 5 800 
37 170 160 54 150 940 7402 128 97.8 356 0 326 0.5 356 7 1700 
38 230 220 49 210 330 1558 128 85 363 0 280 0.313 363 9 1700 
39 140 130 54 120 750 3327 128 94.3 357 0 326 0.375 357 15 800 
40 145 135 39 125 540 8240 128 91.5 375 0 327 0.188 375 2 800 
41 180 170 27 160 260 5166 128 30 383 0 340 0.125 383 6 600 
42 140 130 32 120 370 4660 128 89.1 363 0 336 0.25 363 8.5 650 
43 160 150 52 140 920 3160 128 98.2 365 0 324 0.25 365 4.5 1700 
44 155 145 52 135 700 568 128 93 380 0 325 0.125 380 10 800 
45 130 120 29 100 400 4911 128 89.2 1129 0 331 0.25 1129 5 600 
46 100 90 23 80 500 2057 128 73.3 1129 0 331 0.188 1129 15 600 
47 102 92 26 82 370 7582 128 21 354 0 326 0.25 354 18 550 
48 100 90 37 80 580 1625 128 76.7 366 0 321 0.125 366 20 1500 
49 157 147 47 137 750 4742 128 92.3 380 0 325 0.188 380 7 800 
50 180 170 32 160 280 5876 128 30.8 383 0 340 0.125 383 9 600 

 
Table 3: Points Used as a Secondary Test for the Developed ANN Model (cont.) 
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1 280 457 0.18 12 1.4 33 10000 0.712 5 0.1 1765 3.18 0.01 1 67 
2 200 971 0.09 11 2.6 41.8 1508 0.741 1.53 0.219 4987 0.946 0.02 1.5 136 
3 266 3430 1.16 10 13 35 1266 0.714 1.67 0.234 4432 0.952 0.03 1.2 184 
4 232 1060 1 16.5 13 30.4 250 0.814 1.2 0.453 1250 3.18 0.01 1.2 247 
5 260 960 0.14 11 2.6 34.5 1508 0.741 1.2 0.312 4987 2.166 0.02 0.6 102 
6 268 3800 2.91 10 13 45 1424 0.714 1.91 0.116 5511 0.852 0.03 1 194 
7 259 1496 0.07 16.5 13 30 900 0.814 1.26 0.402 1250 2.071 0.02 1.7 87 
8 260 990 0.09 16.5 13 27.4 897 0.814 1.34 0.253 4987 1.295 0.02 1 136 
9 257 860 0.26 11 2.6 37.5 1508 0.741 1.2 0.312 4987 2.166 0.02 0 88 
10 267 3500 2.6 10 13 30 1424 0.714 1.91 0.116 4432 0.852 0.03 1 40 
11 241 1034 0.07 16.5 13 29 300 0.814 1.26 0.402 1250 2.071 0.02 1.5 81 
12 232 511 0.16 16.5 13 32.4 300 0.814 1.2 0.453 1250 3.18 0.01 1 166 
13 234 1341 0.64 16.5 13 29.7 1000 0.814 1.42 0.321 4405 1.018 0.02 1.2 437 
14 240 549 0.05 16.5 13 33.8 240 0.814 1.49 0.306 4405 0.886 0.03 1.1 141 
15 246 478 0.86 8 2.6 24 300 0.78 1.01 0.453 1032 3.18 0.01 1.2 194 
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16 211 562 0.19 16.5 13 28 605 0.814 1.31 0.321 4405 1.018 0.02 1.2 164 
17 240 790 0.41 11 2.6 36 1508 0.761 1.36 0.34 1765 2.166 0.02 1.5 74 
18 285 2030 1.66 12 1.4 32 359 0.712 2.58 0.1 1765 3.18 0.01 1.5 855 
19 215 1543 2.82 11 2.6 40 359 0.741 1.53 0.219 4987 0.946 0.02 1.2 1833 
20 265 1216 8.42 10 13 35 359 0.714 1.67 0.234 4432 0.952 0.03 1.5 1157 
21 231 1200 5.91 16.5 13 31 359 0.814 1.2 0.458 1250 3.22 0.01 1.5 1500 
22 250 1720 11.4 11 2.6 33 359 0.741 1.2 0.312 4987 2.166 0.02 0.9 1500 
23 260 2660 2.59 10 13 44 279 0.714 1.91 0.168 5511 0.852 0.03 3.5 1716 
24 240 1720 0.69 16.5 13 31 359 0.814 1.26 0.402 1250 2.071 0.02 1.2 1916 
25 250 1920 5.18 16.5 13 28 359 0.814 1.34 0.258 4987 1.295 0.02 2.3 1875 
26 260 1400 0.85 11 2.6 38 474 0.741 1.2 0.312 4987 2.166 0.02 2.2 800 
27 260 2230 1.63 10 13 31 359 0.714 1.91 0.116 4432 0.852 0.03 2 1110 
28 248 2300 1 16.5 13 30 164 0.814 1.26 0.402 1250 2.071 0.02 2.6 614 
29 235 2276 1.35 16.5 13 33 164 0.814 1.2 0.453 1250 3.18 0.01 2.5 715 
30 220 1484 2.98 16.5 13 30 164 0.814 1.58 0.321 4405 1.018 0.02 1.5 1411 
31 240 2570 7.26 16.5 13 32 819 0.814 1.49 0.306 4405 0.886 0.03 2.1 1690 
32 155 942 1.64 23 700 25 1000 0.814 1.42 0.321 1035 3.18 0.01 1 94 
33 152 1020 2.63 25 700 26 240 0.814 1.49 0.306 1035 1.018 0.02 1.5 82 
34 130 680 8.24 11 80 35 300 0.778 1.01 0.453 1035 0.886 0.03 1.2 59 
35 154 1078 6.91 21 40 37 605 0.814 1.31 0.321 1035 3.18 0.01 1.2 28 
36 130 670 11.5 25 180 40 1508 0.761 1.36 0.345 1035 1.018 0.02 0.6 108 
37 155 1179 2.49 12 600 36 359 0.712 1.57 0.15 1035 2.166 0.02 1 28 
38 155 1153 0.64 22 900 31 359 0.741 1.53 0.219 1035 3.18 0.01 1.7 52 
39 130 680 8.68 11 80 35 359 0.714 1.67 0.234 1035 0.946 0.02 1 58 
40 130 375 1.06 20 100 41 359 0.814 1.2 0.453 1035 0.952 0.03 0.9 38 
41 154 374 0.2 19 20 31 359 0.741 1.2 0.312 1035 3.18 0.01 1 31 
42 156 441 0.28 21 60 29 279 0.714 1.85 0.118 1035 2.166 0.02 1.5 66 
43 155 1100 3.23 21 500 36 359 0.814 1.26 0.402 1035 0.852 0.03 1 34 
44 130 670 12.6 25 180 35 359 0.814 1.34 0.253 1035 2.071 0.02 1.2 113 
45 158 565 6.77 22 80 28 474 0.741 1.2 0.316 89.2 1.296 0.02 1.1 26 
46 158 565 1.8 22 80 31 359 0.714 1.91 0.116 73.3 2.166 0.02 1.2 17 
47 154 249 0.51 23 300 29 164 0.814 1.26 0.402 1035 0.855 0.03 1.2 120 
48 155 660 0.19 23 400 32 164 0.814 1.36 0.453 1035 2.071 0.02 1.5 36 
49 130 670 10.8 25 180 28 164 0.814 1.42 0.321 1035 3.15 0.01 1.5 106 
50 154 374 0.21 19 20 27 819 0.814 1.49 0.306 1035 1.018 0.02 1.2 33 
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Figure 14: Actual vs Predicted ANN Oil Rate 

Figure 15: Actual vs Predicted ANN GL Rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Actual vs Predicted ANN GL Rate 
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Well by Well ANN Models 
Because wells respond in different manners to G/L parameters variation and reservoir 
pressure depletion, the researcher proposed a new strategy for ANN, which is to develop a 
neural network for each well independently on other wells test data, thus enhancing the 
predicted parameters and minimizing the error. Each code of these independent codes gives 
oil rate and G/L rate for a single well. Figures 16 & 17 display the results of this method.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Actual vs Predicted Well by Well ANNs GL Rate 
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Figure 16: Actual vs Predicted Well by Well ANNs Oil Rate 
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Comparative Analysis and Discussion 
Obtained results by using global ANN and well by well ANNs were compared with the 
results obtained from Pipesim software. Figures 18 &19 display the results of these methods 
for oil rate and gas lift rate respectively. It can be noticed from these figures that the Well by 
Well ANN models’ results are closest to the actual data and Pipesim results are the furthest to 
the actual data.  
 

 
 

Figure 18: Comparison Between Models in Oil Rate Results 

 
Figure 19: Comparison Between Models in  

Tables 4 & 5 show the statistical analysis of these three methods for oil rate results and gas 
lift rate results respectively. This analysis used to evaluate the results of these method based 
on Average Percent Relative Error (APRE), Average Absolute Percent Relative Error 
(AAPRE), Minimum Percent Relative Error (Min PRE), Maximum Percent Relative Error 
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(Max PRE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Correlation 
Coefficient Squared (R2), Correlation Coefficient (R) and Error Standard Deviation (SD).  
   As can be seen from Tables 4 & 5, Well by Well models produce the most accurate results, 
as they depict the lowest APRE, AAPRE, MSE, RMSE & SD, and Highest R2 & R, which 
means the error of this method is the closest to zero error, on contrary Pipesim models 
produce the least accurate results as they depict the highest APRE, AAPRE, MSE, RMSE & 
SD, and lowest R2 & R, which means the error of this method is the furthest to zero error. 
 

Table 4: Statistical Analysis of Oil Rate Result 
Parameter Pipesim Global ANN Well by Well ANN 
APRE, % -1.9 0.6 -0.3 

AAPRE, % 9.0 6.3 3.8 
Min. PRE% -14.9 -11.1 -7.4 
Max. PRE% 13.8 10.6 6.4 

RMSE 49 33 25 
MSE 2375 1098 606 

R2 0.994 0.997 0.998 
R 0.997 0.999 0.999 

SD 48 33 24 
 

Table 5: Statistical Analysis of Gas Lift Rate Results 
Parameter Pipesim Global ANN Well by Well ANN 
APRE, % -1.9 1.3 1.2 

AAPRE, % 8.6 5.7 3.8 
Min. PRE% -12.0 -9.4 -8.4 
Max. PRE% 12.3 9.6 8.0 

RMSE 0.136 0.093 0.065 
MSE 0.018 0.009 0.004 

R2 0.945 0.973 0.987 
R 0.972 0.987 0.994 

SD 0.132 0.092 0.064 

The Percentage Relative Error (PRE) was calculated for Pipesim, global ANN model, well by 
well ANN models results for oil rate and G/L rate in Figures 20 & 21 respectively. From 
Percent Relative Error histograms, well by well ANN model has the lowest Max.  PRE and 
the highest Min. PRE, thus the lowest range of error (11.2 % & 12.2 % for oil rate and G/L 
rate respectively). Pipesim model has the highest Max. PRE and the lowest Min. PRE, thus 
the highest range of error (23.9 % & 20.6 % for oil rate and G/L rate respectively). 

 
Relative Importance of Input Variables in the Developed ANN Models 
The weights connecting the variables in the neural network can be used to determine the 
relationships between variables. The weights indicate the relative effect of information 
refined in the network. Input variables that are not relevant to an output variable are inhibited 
by their weights. The opposite effect can be noticed for weights given to variables that have 
strong direct or reverse relations with an output variable.  
A method proposed by Garson 1991  indicates the relative importance of input variables for a 
single output variable in the neural network by partitioning the model weights. The relative 
importance of a variable can be determined by identifying all weights connecting the specific 
input node that move through the hidden layer to the output variable. This is repeated for all 
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other variables until a list of all weights that are related to each input variable is obtained. The 
connections are listed for each input node and scaled relative to all other inputs. A single 
value is obtained for each variable that describes the relationship with the response variable 
in the model. The equation of Garson algorithm to determine the relative importance of input 
variables is given by:  

������ = ∑ ��|�|�� ∑ |�|��,������� �����������
∑ �∑ ��|�|��,� ∑ |�|��,������� ����������� ������

                         (2) 

Where:  ������ represents the percentage of importance of the input variable on the output variable. �� is the number of input variables and �� is the number of neurons in the hidden layer, the 
term |�|��,� is the absolute value of the weight of the kth input variable in the Jth hidden layer. 
The term ���� is the absolute value of the output layer weight in the neural network for Jth 
hidden layer. 
Tables 6 & 7 list the relative importance of various input parameters on both oil rate output 
and gas lift rate output respectively. As can be generally seen, water cut has the greatest 
impact on oil rate and gas lift rate prediction followed by net pay thickness (or producing 
interval), most of the parameters have almost equal importance in the range of (5%-3%), 
separator pressure and flowline temperature have the least impact on the output parameters in 
the developed ANN model. 
The results of Garson calculation can be summarized as follows:  
 Water cut has the greatest importance on both oil rate and G/L rate. As water cut 

increases in a well, the total pressure gradient in the well will increase because of the 
increase in liquid density as water is heavier than oil, thus causes a decrease in oil rate 
and necessitates increasing gas lift rate to bring oil production rate to its previous value.  

 Net pay thickness comes in second place in importance. As the net pay thickness 
increases, the flow area increases, which allows producing more liquid amount from the 
reservoir, this requires injecting more amount of gas lift to bring GLR to its former 
value.  

 Other parameters related to reservoir fluid properties and wellbore performance affect 
almost equally on both oil rate and G/L rate. 

 Separator pressure and flow line temperature have insignificant influence on both oil rate 
and G/L rate, so they can be neglected in ANN models.  

   Based on inputs’ relative importance, ANN model was reconstructed after excluding the 
least 5, 10, 15, 20 & 25 important input parameters, and models were compared to the 
original model using R, MSE, error SD, APRE and AAPRE. As in Table 8 & Figure 22, R-
values were not affected significantly due to data accuracy and abundance. On the other hand, 
other statistical parameters showed increase as the number of inputs decreased as in Figures 
23 & 24, due to the loss of importance of data excluded from the models, which decreases the 
model efficiency to get accurate results. 
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Figure 20: Percent Relative Error for Oil Rate Test Results 
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Figure 21: Percent Relative Error for Gas Lift Rate Test Results 
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Table 6: Relative Importance of Input Parameters on Oil Rate Output. 

 
 
 
 

Table 7: Relative Importance of Input Parameters on Gas Lift Rate Output 

 
 
 
 
 
 
 

Parameter Relative  
Importance % Parameter Relative  

Importance % 
Water Cut  8.10 Gas Gravity 3.29 

Net Pay Thickness  5.04 Reservoir Permeability  3.27 

Reservoir Temperature  4.74 Oil Formation Volume 
Factor  3.24 

Orifice Port Size  4.73 Kick-off Point  3.10 
Inclination 4.67 Oil Gravity (API) 3.09 

Bottom Hole Flowing 
Pressure  4.50 Gas Viscosity  3.04 

Gas Injection Depth 4.30 Flow Line Pressure  2.91 
Flow Line Length  4.27 Reservoir Porosity  2.84 

Gas Formation Volume 
Factor  3.99 Annulus Pressure  2.82 

Choke Size 3.96 Reservoir Pressure  2.81 

Productivity Index  3.71 Formation Gas-Liquid 
Ratio  2.81 

Oil Viscosity  3.69 Well Head Pressure  2.60 
Reservoir Depth  3.42 Separator Pressure  2.21 

Bubble Point Pressure  3.29 Flow Line Temperature 1.64 

Parameter 
Relative 

Importance 
% 

Parameter 
Relative 

Importance 
% 

Water Cut  7.45 Choke Size 3.29 
Net Pay Thickness  6.58 Bubble Point Pressure  3.17 
Orifice Port Size  5.60 Oil Gravity (API) 3.01 

Reservoir Temperature  4.86 Oil Formation Volume Factor  2.97 
Gas Injection Depth 4.74 Gas Gravity 2.94 
Flow Line Length  4.45 Annulus Pressure  2.78 

Oil Viscosity  4.20 Reservoir Porosity  2.74 
Gas Viscosity  4.17 Reservoir Depth  2.62 

Productivity Index  4.14 Kick-off Point  2.49 
Bottom Hole Flowing Pressure  3.97 Reservoir Pressure  2.42 

Flow Line Pressure  3.60 Formation Gas-Liquid Ratio  2.22 
Inclination 3.52 Well Head Pressure  2.08 

Reservoir Permeability  3.48 Separator Pressure  1.70 
Gas Formation Volume Factor  3.40 Flow Line Temperature 1.42 
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 Figure 22: Correlation Coefficients of the Reduced Models 

Table 8: Effect of Number of Inputs on Model Statistical Parameters 

 

   The cut off number of inputs is the number of inputs after which, further decrease in 
number of inputs causes significant decrease in correlation coefficient values and a 
significant increase in MSE, SD, APRE & AAPRE, which decreases the model accuracy. 
Also, increasing the number of inputs more than this optimum number, causes a slight 
increase in correlation coefficient values and insignificant decrease in MSE, SD, APRE & 
AAPRE, this effect on increasing model accuracy can be neglected and stop further 
increasing the number of inputs. This can be indicated by a decrease in statistical parameters 
trendline slopes, the curves tend to be more horizontal, which causes insignificant change in 
their value with the increase in the number of inputs, as shown in Figures 22, 23 & 24 the cut 
off number of inputs is 18 inputs which corresponds to 75% total importance.  
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E % Training 

R 
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R  All R  

3 25 19 0.97608 0.97625 0.97522 0.97598 3060 54.6 -22.7 40.4 
8 20 41 0.98405 0.98172 0.98332 0.9836 2014 43.9 -15.5 29.4 
13 15 60 0.98837 0.98724 0.98862 0.98825 1432 36.3 -12.2 24.6 
18 10 75 0.9924 0.99357 0.99275 0.99263 1109 29.5 -7 17.9 
23 5 90 0.99379 0.9932 0.99336 0.99364 873 27.3 -5.7 16.9 
28 0 100 0.99687 0.99675 0.99677 0.99683 388 24.1 -4.9 14.7 
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Comparison with Previous Work 
Ranjan et al., (2015) used ANN for Gas Lift Optimization. Their study is based on wells in 
India which are under gas lift operations. They used 10 input parameters for the ANN model 
to predict 2 output parameters (oil rate & gas lift rate). Figure 25 compares training, 
validation and testing data regression of Ranjan et al and our study. It can be seen that our 
study regression is greater than Ranjan et al, thus our study model is more accurate due to the 
great number of inputs included in this study.  
Shokir et al., (2017) used synthetic sample points of 7 input variables for the ANN model to 
obtain oil rate as output, Figure 26 shows a comparison between test data regression of 
Shokir et al and our study. It can be concluded that our study is more accurate (greater 
regression) as it uses actual data of larger input data set. 
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Figure 23: MSE & SD of the Reduced Models 

Figure 24: APRE & AAPRE of the Reduced Models. 
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Figure (25.a): Ranjan et al Training Data 
Regression 

 

Figure (25.b):  Study Training Data Regression 
 

Figure (25.c): Ranjan et al Validation Data 
Regression 

 

Figure (25.d): Study Validation Data Regression 

 

Figure (25.e): Ranjan et al Test Data Regression 

 

Figure (25.f): Study Test Data Regression 



 
Moataz El-Tantawy, Ahmed Elgibaly and Mohsen El-Noby 

 
THE JOURNAL OF APPLIED SCIENCES RESEARCH, 7(1), 41-68 

 

 

Pa
ge

66
 

  
 

Figure (25.g): Ranjan et al All Data Regression 
 

 

Figure (25.h): Study All Data Regression 

 

Figure (25): Comparison between Ranjan et al and Study Input Data Regression 

 
 

Figure (26.a): Shokir et al Test Data Regression 

 

Figure (26.b): Study Test Data Regression 
 

Figure (26): Comparison between Shokir et al and Study Test Data Regression 
 
Conclusions and Recommendations 
In this paper, various models were presented to predict gas lift optimization parameters 
(optimum oil rate and optimum gas lift injection rate): Pipesim models that use conventional 
nodal analysis and ANN models that use wells’ history and databases.  
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A global ANN model for the entire wells was developed, trained for optimum structures, and 
tested using wells’ test data. Also, single well ANN models were presented to predict the 
optimization parameters for each well separately.  
Statistical analysis has been performed and showed that Global ANN model and Well by 
Well ANN models produce more accurate results than Pipesim models.   
The influence of input parameters on output parameters has been calculated using Garson 
algorithm, and the least important input data were excluded to obtain reduced ANN models 
with only the most important inputs. The reduced models were constructed, run and evaluated 
against the inclusive model.  
It has been shown that there is a cut off number of inputs required to gat accurate model and 
any further decrease in input number would decrease correlation coefficient value and 
increase mean squared error, error standard deviation and relative error, affecting model 
accuracy adversely. 
A comparison with previous studies showed that this study presents more accurate results 
because a larger accurate data set of more input parameters were incorporated.  
The concluded that ANN is a powerful, simple, trustful tool that provides an alternative for 
complex calculations of the nodal analysis and hence speeds up the calculations and saves 
effort and time, also ANN can handle incomplete and faulty information. 
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