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or bis-phosphines. They can bind to DNA via the guanine and cytosine bases and act as 
antitumor agents against L1210 leukemia and M5076 reticulum cell sarcoma. In 1972, Sutton 
synthesized a gold complex with a thiolate and a phosphine ligand: the 2,3,4,6-tetra-O-acetyl-
1-thio-β-D-pyranosato-S-(triethylphosphine)gold(I) compound also known by the trade name 
Auranofin. It became one of the most promising gold complexes in medicinal chemistry, with 
a great potency against rheumatoid arthritis and cancer cells such as P388 leukemia and B16. 
A small number of scattered observations in the early structural chemistry of gold (I) 
complexes has grown into a wealth of reports on related phenomena in the last two decades, 
which finally provided a clear pattern of the conditions under which direct interactions 
between closed-shell gold(I) centers can contribute significantly to the stability of molecular 
and multidimensional structures. The underlying "aurophilic" bonding has been analyzed in 
theoretical studies.The transfer of an organic group to a gold centre is traditionally carried out 
using organolithium compounds, Grignard reagents or organomercurials. There are however 
alternative transmetallation agents, which are particularly attractive because of their 
insensitivity to air and moisture, their mild reaction conditions and simple work-up. These 
include organotin compounds and boronic acids.Whilst the former have been used in the 
preparation of both gold compounds, the latter are so far limited to gold compounds represent 
interesting alternatives to other metal-based luminescent compounds with a d electron 
configuration. For Pd and Pt complexes (in the absence of metal –metal interactions) the 
emissive excited state is either a metal-to-ligand charge transfer (MLCT) or an intraligand 
(IL) transition (or a mixture of both) and of triplet-character (phosphorescence). Their metal 
centred transitions are usually at high energy and do not strongly influence the luminescence 
properties, which is important as these dd-states usually lead to a very efficient radiationless 
deactivation of the excited state (Víctor Rojas-Cervellera, Ernest Giralt, and Carme Rovira, 
2012; Dmitriy S. Dolzhnikov et al., 2012; Mao-Sheng Miao et al., 2012; Lei Gao et al., 2012; 
Laura Rodríguez et al., 2012; Volodymyr Smetana et al., 2012; Igor O. Koshevoy et al., 2012; 
Madanakrishna Katari et al., 2012; Atiya T. Overton et al., 2012; Yifeng Wang et al., 2012; 
Yu-Peng Zhou et al., 2012; Gemma E. Craig et al., 2012; Javier A. Cabeza et al., 2012; Ping 
Chai et al., 2012; Maria Serratrice et al., 2012). Au(III) complexes are much less 
investigated due to some preconditions which have to be fulfilled for an emis-sive behaviour: 
because of the high oxidation potential of gold in the oxidation state +3 a MLCT is not 
favoured. For these complexes containing ligands with an extended π-system an emissive IL 
excited state is feasible, but the energetically low lying dd-states quench potential emissive 
states of most Au(III) complexes. However, these dd-states can be destabilized by strong field 
ligands diminishing the radiationless deactivation. Consequently, several cyclometallated 
complexes of the general formula [Au(C–N)L2]n+(C–N = 2-phenylpyridine type ligand; L = 
acetylide, NHC;n= 0 or 2) and similar complexes bearing pincer type ligands including 2,6-
diphenylpyridine or 6-phenyl-2,2′-bipyridine were reported to feature luminescence even in 
fluid solution at room temperatura (Hanan E. Abdou et al., 2012; Marco Baron et al., 2012; 
Bin Li, et al., 2012;  Pedro I. da et al., 2012; Naween Dahal et al., 2012; Tina H. T. Hsu et 
al., 2012; Kolle E. Thomas, et al., 2011; Zhongping Ou et al., 2011). The emissions are 
mostly assignable to an 3 IL-transition and sometimes these complexes also show a dual 
emission of both1 IL and 3IL char-acter Luminescent cyclometallated Au(III) complexes 
were reviewed in 2011 11 and since then, several new examples of this type were published. 
To the best of our knowledge, there is only one report on a luminescent Au(III) 
complexbearing a biphenyl moiety: [Au(Ppy)(Bip)] (Ppy = 2-phenyl-pyridine; Bip = 
biphenyl). However, the second chromophore (Ppy) complicates the precise assignment of the 
transition. Indeed, according to TD-DFT calculations, both a ligand-to-ligand charge transfer 
(3LLCT) [π(Bip)→π*(Ppy)] and3 IL[π(Bip)→π*(Bip)] contribute to the excited state. For 
this reason, the complexes presented below are particularly valuable, because they allow the 
investigation of the discrete chromophoric Au(III)-biphenyl moiety (Yuan Yuan et al., 2011; 
Jeffrey W. Hudgens et al., 2011; Margot Wenzel, et al., 2011; Olga Crespo et al., 2011; 
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Elisabete Oliveira et al., 2011; Elisabete Oliveira, et al., 2011; Rubén Chico, et al., 2011; 
Hsin-Lun Wu, et al., 2011; Ilaria Biondi, et al., 2011; Corinna Wetzel, et al., 2011; Saroj L. 
Samal et al., 2011; José M. López-de-Luzuriaga, et al., 2011; Jai Anand Garg, et al., 2011). 
In 1973, Chatt and co-workers performed transition-metal-catalyzed reactions in water. Since 
then, there has been a tremendous effort in the development of new water-soluble 
organotransition-metal complexes with the practical and environmental benefits in mind. This 
is principally accomplished through ligand design; thus, a variety of water-soluble ligand 
systems has been developed and explored. The most successful and noted of these systems 
have been phosphines with water-soluble substituents, such as sulfonated aryl groups, 
ammonium groups, and carboxylated aromatic groups. Further, there has been much success 
with some nonaromatic groups such as tris(hydroxymethyl)phosphine (P(CH2OH)3). Another 
nonionic aliphatic water-soluble phosphine is the tetrabasic 1,3,5-triaza-7-
phosphaadamantane (PTA). Due to its utility as a water-soluble ligand and in efforts to 
explore the unique chemistry of this ligand, Darenberg´s group has been active in the 
investigation of the different facets of PTA. Further, PTA has been investigated in many 
different areas such as photoluminecence of gold(I) phosphine complexes and intermolecular 
hydrogen-metal interactions, as well as its use as a precursor to other novel phosphine amine 
compounds and ligands. [ (Roberto Cao, et al., 2011; H. V. Rasika Dias, et al., 2011; Doris Y. 
Melgarejo, et al., 2011; Adriana Ilie, Ciprian I. Rat et al., 2011; Qisheng Lin and John D. 
Corbett et al., 2011; Manoja K. Samantaray, et al., 2011; Carrie A. Simpson, et al., 2010; 
Angela M. Kuchison, et al., 2010; Maria José Calhorda, et al., 2010; Hong-Jhin You, et al., 
2010; Camino Bartolomé, et al., 2010; Sebastián A. Suárez, et al., 2010; Masashi Saitoh, et 
al., 2010) Classical coordination chemistry began by using water both as solvent and as ligand 
for many compounds. As this discipline of chemistry advanced, new ligands, complexes, and 
reactions were discovered that required completely anhydrous reaction conditions as well as 
special apparatus and techniques so as to keep water out of reactions. Today, the tide has 
turned and water is experiencing a renaissance as a solvent in inorganic and organometallic 
chemistry. This change, motivated largely by the ever-increasing awareness of environmental 
concerns in the design of industrially important chemical processes has been the main driving 
force in the exploration of water-based reactions and water-soluble catalysts. However, the 
vast majority of homogeneous catalysts available today are either insoluble or unstable in 
water; as a result, one key challenge for the inorganic/organometallic chemistry community 
today is the design and development of compounds that are both soluble and stable in aqueous 
medium. Syntheses of hetero-tris-chelates, [Ru(bpy)n(RaaiR/)3-n](ClO4)2 [bpy = 2,2-
bipyridine; n = 1, n = 2) containing labile reaction centres are reported from Sinha´s 
laboratory. But the gold chemistry with multinuclear NMR spectroscopy of this ligand system 
is totally unexplored. In this paper, we examine the reaction of RaaiR/ on gold(III) bis-chloro-
bpy derivatives and the products are isolated, [Au(bpy)(RaaiR/)]3+ [RaaiR/ = p-R-C6H4-N=N-
C3H2-NN-1-R/, (1-3), abbreviated as N,N/-chelator, where N(imidazole) and N(azo) represent 
N and N/, respectively; R = H (a), Me (b), Cl (c) and R/ = Me (1), CH2CH3 (2), CH2Ph (3), 
bpy is 2,2´-bipyridine, OSO2CF3 is the triflate anion, tht is tetrahydrothiophen]. The 
complexes are well charecterised by i.r., 1H n.m.r., 13C n.m.r, 1H-1H COSY n.m.r, 1H-13C 
HMQC and mass spectrometry.  

EXPERIMENTAL 

Material and Instrumentation 
Published methods were used to prepare RaaiR/ [5-7], [AuIII(bpy)(Cl)2]

+ [8-11]. All other 
chemicals and organic solvents used for preparative work were of reagent grade (SRL, Sigma 
Alhrich). The purification of MeCN used as solvent and other solvents were done following 
the literature method. Microanalytical data (C, H, N) were collected using a Perkin Elmer 
2400 CHN instrument. I.r. spectra were obtained using a JASCO 420 spectrophotometer 
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(using KBr disks, 4000-200 cm-1). The 1H nmr spectra in CDCl3 were obtained on a Bruker 
500 MHz FT n.m.r spectrometer using SiMe4 as internal reference, CFCl3 (external 19F). 
Solution electrical conductivities were measured using a Systronics 304 conductivity meter 
with solute concentration 10-3 M in acetonitrile. Mass spectra were recorded on VG 
Autospec ESI-mass spectrometry. Electrochemical work was carried out using an EG & G 
PARC Versastat computer controlled 250 electrochemical system. All experiments were 
performed under a N2

 
atmosphere at 298K using a Pt-disk milli working electrode at a scan 

rate of 50 mVs-1. All results were referenced to a saturated calomel electrode (SCE). 
 
Preparation of the Complexes 
[(2,2´-bipyridine){1-ethyl-2-(p-tolylazo)imidazole}aurate(III)]triflate, 
[AuIII(bpy)(HaaiEt)](OTf)2(PF6), 2b 

In path I, to a CH2Cl2 solution (15 cm3) of [AuIII(bpy)Cl2] (0.665 g, 0.10 mmol) 
[Ag(tht)(OTf)] was added (1:2) and into this, was added yellow CH2Cl2 solution of 1-ethyl-2-
(p-tolylazo)imidazole (0.020g, 0.10mmol), slowly, dropwise, and the mixture was stirred at 
343-353 K for 2 h..  

In path II direct ligand was added with the dichloro gold parent complexes following the 
stoichiometric ratio and the resulting solution was under stirring for 30 hr(product was 
isolated in a very high yield). Where respectively added the other ligands, HeaaiMe (0.0186 g, 
0.1 mmol, 1a), MeaaiMe (0.020 g, 0.1 mmol, 1b), ClaaiMe (0.0220 g, 0.1 mmol, 1c), MeaaiEt 
(0.0214 g, 0.1 mmol, 2b), ClaaiEt (0.0235 g, 0.1 mmol, 2c), HaaiBz (0.0262 g, 0.1 mmol, 3a), 
MeaaiBz (0.0276 g, 0.1 mmol, 3b), ClaaiBz (0.0297 g, 0.1 mmol, 3c). The orange solution 
that resulted was concentrated (4 cm3) and kept in a refrigerator overnight (1 h). The addition 
of hexane to the above red solution gives precipitate which was collected by filtration, washed 
thoroughly with hexane to remove excess ligand and then dried in vacuo over pump 
overnight. The yield was 0.088 g (80%). All other complexes were prepared similarly as 
stated above. Analysis for [AuIII(bpy)(HaaiMe)]PF6(Cl)2, [C20H18N6Au]PF6(Cl)2, (1a), 
Calcd(found): C, 31.8(31.9), H, 2.4(2.6), N, 11.1(11.2); IR (N=N) 1370 (C=N) 1590 (bpy) 
1600,1150,1290; ESIMS, 755[M+], 539[M-2Cl,PF6], Analysis for 
[AuIII(bpy)(MeaaiMe)]PF6(Cl)2, [C21H20N6Au]PF6(Cl)2, (1b), Calcd(found): C, 32.8(32.9), H, 
2.6(2.6), N, 10.9(10.8); IR (N=N) 1379 (C=N) 1599 (bpy) 1610,1150,1299; ESIMS, 
769[M+], 553[M-2Cl,PF6], Analysis for [AuIII(bpy)(ClaaiMe)]PF6(Cl)2, 

[C19H17N6AuCl]PF6(Cl)2, (1c), Calcd(found): C, 30.8(30.4), H, 2.1(2.2), N, 10.6(10.7); IR 
(N=N) 1370 (C=N) 1599 (bpy) 1610,1150,1290; ESIMS, 789.5[M+], 573.5[M-2Cl,PF6], 
Analysis for [AuIII(bpy)(HaaiEt)]PF6(Cl)2, [C21H20N6Au]PF6(Cl)2, (2a), Calcd(found): C, 
32.8(32.9), H, 2.4(2.6), N, 10.9(10.8); IR (N=N) 1379 (C=N) 1599 (bpy) 1620,1150,1295; 
ESIMS, 769[M+], 553[M-2Cl,PF6], Analysis for [AuIII(bpy)(MeaaiEt)]PF6(Cl)2, 

[C22H22N6Au]PF6(Cl)2, (2b), Calcd(found): C, 33.8(33.7), H, 2.8(2.9), N, 10.7(10.8); IR 
(N=N) 1370 (C=N) 1590 (bpy) 1600,1150,1290; ESIMS, 783[M+], 567[M-2Cl,PF6], 
Analysis for [AuIII(bpy)(ClaaiEt)]PF6(Cl)2, [C21H19N6Au]PF6(Cl)2, (2c), Calcd(found): C, 
31.3(31.3), H, 2.4(2.6), N, 10.6(10.5); IR (N=N) 1370 (C=N) 1596 (bpy) 1610,1150,1296; 
ESIMS, 803.5[M+], 587.5[M-2Cl,PF6], Analysis for [AuIII(bpy)(HaaiBz)]PF6(Cl)2, 

[C26H22N6Au]PF6(Cl)2, (3a), Calcd(found): C, 37.5(37.6), H, 2.7(2.6), N, 10.1(10.2); IR 
(N=N) 1379 (C=N) 1590 (bpy) 1600,1155,1295; ESIMS, 831[M+], 615[M-2Cl,PF6], 
Analysis for [AuIII(bpy)(MeaaiBz)]PF6(Cl)2, [C27H24N6Au]PF6(Cl)2, (3b), Calcd(found): C, 
38.4(38.3), H, 2.8(2.9), N, 9.9(9.9); IR (N=N) 1375 (C=N) 1595 (bpy) 1600,1150,1290; 
ESIMS, 845[M+], 629[M-2Cl,PF6], Analysis for [AuIII(bpy)(ClaaiBz)]PF6(Cl)2, 

[C26H21N6Au]PF6(Cl)2, (3c), Calcd(found): C, 36.0(36.1), H, 2.4(2.6), N, 9.7(9.8); IR (N=N) 
1375 (C=N) 1590 (bpy) 1600,1150,1290; ESIMS, 865.5[M+], 649.5[M-2Cl,PF6]. 
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RESULTS AND DISCUSSION 

Synthesis and Formulation 

+ 2 [Ag(tht)(OTf)] [Au(bpy)(tht)2](PF6)(OTf)2 + 2 AgCl

[Au(bpy)(RaaiR´)](PF6)(OTf)2

RaaiR´

[Au(bpy)Cl2]PF6

40% yield

Path I

Path II

[Au(bpy)Cl2]PF6 + RaaiR´
MeOH

30 hr
stirring

[Au(bpy)(RaaiR´)](Cl2)PF6

85% yield
     

    

Au
N

N

R´

R

N

(OTf)2 / Cl2PF6N
2

3

45

6

7

8

9
10

11

1

R = H(a), Me(b), 
          Cl(c)
R´= Me(1), Et(2),
        Bz(3)

N

N

 
Figure 1: Synthesis of the complexes in two different paths and formulation of the product 

 
The complexes, [AuIII(bpy)(RaaiR/)]3+ [RaaiR/ = p-R-C6H4-N=N-C3H2-NN-1-R/, (1-3), 

abbreviated as N,N/-chelator, where N(imidazole) and N(azo) represent N and N/, 
respectively; R = H (a), Me (b), Cl (c) and R/ = Me (1), CH2CH3 (2), CH2Ph (3), bpy=2,2´-
bipyridine, OSO2CF3 is the triflate anion, tht is tetrahydrothiophen], were prepared by 
removing tht from [AuIII(bpy)(tht)2]

3+, with RaaiR´ under stirring at 343-353 K in 
dichloromethane solution in good yield (75-80%). In path II direct ligand was added 
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following the stoichiometric ratio and the resulting solution was under stirring for 30 hr (high 
yield). The synthetic routes are shown in Scheme 1. The composition of the complexes is 
supported by microanalytical results. The red orange complexes are soluble in common 
organic solvents but insoluble in H2O, methanol, ethanol. In MeCN, the complexes, (1-3) 
behave as 1:3 electrolytes (M = 90-120 -1cm-1mol-1).  
 
Spectral Studies 

I.r. spectra of the complexes, [AuIII(bpy)(RaaiR/)]3+ show a 1:1 correspondence to the 
spectra of the bromo analogue, except the appearance of intense stretching at 1365-1370 and 
1570-1580 cm-1 with concomitant loss of (Au-Cl) at 320-340 cm-1. They are assigned to 
(N=N) and (C=N) appear at 1365-1380 and 1570-1600 cm-1, respectively. Other important 
frequencies are (bpy) at 1110-1120, 1200-1210, 1250-1260, 750-760, 695-700 and 500-510 
cm-1 along with weak bands at 545-550 cm-1.  

The ESI mass spectrum of a MeCN solution in the positive ion mode is structurally 
enlightening, since it displays a series of characteristic singly. Population of gas phase ions 
generated by ESI often closely reflects that in solution.  

Fluorine n.m.r., 19F{H}, of the present series of complexes show a sharp peak at -78 for the 
presence of triflate ion.  

The 1H n.m.r. spectra of [AuIII(bpy)(RaaiR/)](OTf)2 (1-3) complexes were unambiguously 
assigned (Figure 1,2) on comparing with parent complexes and the free ligand (RaaiR/). 
Complexes may exist in two different geometric isomers and with reference to coordination 
pairs of N(imidazole), N and N(azo), N/ they are trans-cis (tc), cis-trans (ct) (Isomer A,B). 
The solution 1H NMR spectra support at least the presence of two isomers in different 
proportion. 

 
 

Au

N

N

N

N´
Au

N

N

N´

N

A B  
Figure 2: Different Isomer A and B of the complexes 

 
 

 The aryl protons (7-H-11-H) of (7-9) are downfield shifted by 0.1-0.7 ppm as compared to 
those of the parent derivatives. They are affected by substitution; 8- and 10-H are severely 
perturbed due to changes in the electronic properties of the substituents in the C(9)-position. 
Imidazole 4- and 5-H appear as doublet at the lower frequency side of the spectra (7.0-7.2 
ppm for 4-H; 6.9-7.1 ppm for 5-H). The proton movement upon substitution (9-R) is 
corroborated with the electromeric effect of R. The aryl protons 7-(7/-) and 11-(11/-)H 
resonate asymmetrically indicative of a magnetically anisotropic environment even in the 
solution phase. The 1-R/ [R/ = Me, CH2CH3, CH2(Ph)] exhibit usual spin-spin interaction. 1-
Me appears as a singlet at 2.0 ppm for [Au(bpy)(RaaiMe)]3+; the methylene protons, 1-CH2-
(CH3) show AB type quartet (ca. 4.4, 4.6 ppm) and (1-CH2)CH3 gives a triplet at 1.5 ppm 
(7.0-8.0 Hz) for [Au(bpy)(RaaiCH2CH3)]

3+ . 1-CH2(Ph) protons appear at AB type quartets 
(ca. 5.5, 5.7 ppm) with geminal coupling constant avg. 8.8 Hz in [Au(bpy)(RaaiCH2Ph)]3+ 
(Fig. 3 and Fig. 4, Table 1).  

The 13C (H)NMR spectrum provides direct information about the carbon skeleton of the 
molecule. Assignment of different resonant peaks to respective carbon atoms are done on nine 
complexes and the data are given on experimental section (Fig. 1,2). The non-protonated 
carbon atoms at C(2) and C(6) of the arylazoimidazole moiety is shifted farthest downfield in 
the spectrum effected by the magnetic interaction of two bulky phenyl rings environment and 
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the methyl, ethyl, benzyl substituted imidazole rings and the pi electron delocalization on the 
=N-CC=N- and =N-CC=CC-. 
 

 

 
Figure 3: Aromatic region 1H NMR and 13C (H) NMR of complex (2a) 
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Figure 4: Complete 1H NMR and 13C (H) NMR of complex (2b)
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Table 1: 1H-n.m.r. spectral data,  (J/Hz), ppm in CDCl3 and cyclic voltammetric datag of the complexes 

Compd. a,a´-H b,b´ c,c´ 4-Hc 5-Hc 7,11-Hc 8,10-H N-CH3 N-CH2 d,d´ 

‐EL1 ‐EL2  ‐EL3

Units in V (EP in mV) 

(1a)a 9.5(5) 8.8(7) 8.6(4) 7.55(7.5) 7.46 (7.5) 8.03 (8.1) 7.75 (8.1)d 4.09f - 8.4(9) 

0.33 0.69 0.9

(75) (110) 

(1b) 9.6(7) 8.8(7) 8.7(8) 7.58 (7.5) 6.96 (7.5) 8.07 (8.1) 7.84 (8.1)c 4.17f - 8.3(3) 

0.39 0.68 0.98

(90) (120) 

(1c) 9.5(5) 8.8(7) 8.6(4) 7.3 (8.1) 7.42 (8.1) 8.05 (7.8) 7.85 (7.8)c 4.16f - 8.4(5) 

0.30 0.67 0.97

(80) (110) 

(2a)a 9.2(5) 8.9(8) 8.6(9) 7.4 (7.5) 7.00 (7.5) 8.01 (7.8) 7.75 (8.1)d 1.52(8.1)d 
4.62,4.65 

(10.0)e 8.1(9) 

0.30 0.65 0.96

(75)  (120) 

(2b) 9.5(5) 8.8(7) 8.6(4) 7.53 (8.1) 7.24 (8.1) 8.01 (7.5) 7.72 (7.5)c 1.58(8.1)d 
4.64,4.56 

(10.0)e 8.4(3) 

0.40 0.70 0.95

(80) (110) 

(2c) 9.5(5) 8.4(3) 8.1(5) 7.34 (8.1) 7.36 (8.1) 8.04 (7.5) 7.76 (7.5)c 1.55(8.1)d 
4.64,4.53 

(11.0)e 8.1(9) 

0.29 0.61 0.94

(90)  (110) 

(3a)a 9.5(5) 8.8(7) 8.6(4) 7.56 (7.8) 7.48 (7.8) 8.08 (8.1) 7.78 (8.1)d - 
5.68,5.73 

(15.0)g 8.4(9) 

0.28 0.60 0.93

(70)  (120) 

(3b) 9.5(5) 8.1(7) 8.1(6) 7.47 (8.1) 6.99 (8.1) 8.01 (8.1) 7.70 (8.1)c - 
5.46,5.73 

(17.0)g 
8.2(9) 

0.36 0.70 0.94

(70) (120) 

(3c) 9.5(5) 8.8(7) 8.6(4) 7.11 (7.8) 7.32 (7.8) 8.15 (8.1) 7.78 (8.1)c - 
5.44,5.70 

(18.0)g 
8.4(3) 

0.28 0.62 0.96

(90)  (100) 
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a (9-H) 7.45 ppm(m); b  (9-Me); c doublet;  d triplet;  e AB type sextet, geminal coupling constant; f 1-Me, singlet; g AB type quartet, geminal coupling constant; h Phenyl–H; g 
Solvent, MeCN, supporting electrolyte : nBu4NClO4 ( 0.1M ), working electrode : GC milli electrode, auxiliary electrode : Pt – wire, reference electrode : SCE, solute 

concentration :  10-3 M, scan rate : 50 mV s-1, EP =  Epa – Epc  where Epa = anodic peak potential and Epc = cathodic peak potential ; 

 

 

Table 2: 13C-NMR spectral data of [Au(bpy)(RaaiR/)] in CDCl3 

Compd 2-C 6-C 4-C 5-C 7,11-C 8,10.-C 9-C 12-C a,a´-C b,b´-C c,c´-C d,d´C N-Me,Et,Bz 

(1a) 136.87 139.89 125.21 124.76 130.98 128.98 127.56 148.87 154.98 145.66 144.99 150 30.98 

(1b) 136.87 139.89 125.21 124.76 131.98 127.98 126.56 149.87 152.98 145.66 144.99 154 31.98 

(1c) 135.87 139.89 125.21 122.76 130.98 128.98 127.56 148.87 154.98 145.66 144.99 150 30.08 

(2a) 135.87 139.89 125.21 123.76 131.98 127.98 127.56 147.87 154.98 144.66 144.99 151 30.98, 41.12 

(2b) 135.87 139.89 125.21 124.76 130.98 128.98 127.56 148.87 150.98 145.66 144.99 153 31.98,42.09 

(2c) 135.87 139.89 125.21 122.76 131.98 128.98 126.56 148.87 154.98 145.66 144.99 151 30.98,42.65 

(3a) 135.87 139.89 124.21 124.76 130.98 128.98 127.56 148.87 154.98 145.66 144.99 152 31.98,128-132 

(3b) 135.87 138.89 125.21 124.76 131.98 128.98 125.56 148.87 154.98 145.66 145.99 152 30.98,128-137 

(3c) 135.87 139.89 125.21 124.76 130.98 128.98 127.56 148.87 150.98 145.66 144.99 153 30.98,129-138 
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Similarly the carbon atom adjacent to the PPh3 molecule in the complex resonance at a 
lower field resulting of the conjugative effect of the phenyl ring with more electronegative pi-
conjugate system. The methyl carbon atom of the imidazole ring resonate at 30 ppm, 
resonably compare to the other carbon atoms resonance(Fig. 3 and Fig. 4, Table 2).  

In the COSY spectrum, absence of any off-diagonal peaks extending from  = 14.1 ppm 
and 9.5 ppm confirm their assignment of no proton on N(1) and N(3) respectively. However, 
extending horizontal and vertical lines from  = 8.3 ppm [C(8)H] and 8.6 ppm [C(10)H] 
encounter cross peaks at  = 7.1 ppm and 7.2 ppm, where the C(7)H and C(11)H resonances 
are merged into multiplets along with the phenyl ring proton resonances. The comperatively 
weaker coupling interactions of C(8)H and C(10)H with the far apart positioned C(4)H and 
C(5)H protons of the imidazole moity are shown by the poorly resolved cross peaks at  = 7.3 
ppm and 7.31 ppm. The 1H-13C heteronuclear multiple-quantum coherence (HMQC) 
spectrum provides information regarding the interaction between the protons and the carbon 
atoms to which they are directly attached. Here, the absence of any contours at higher 
frequency region assign them C2, C6, C-ipso, carbon atoms respectively. This is because, 
they belong to the non-protonated carbon atoms on the imidazole, phenyl and aryl rings. So 
they are unable to show any direct 1H-13C heteronuclear multiple-quantum coherence. The 
peaks observed at  = 134,131,135 ppm and 137 ppm assign them to the C(9),C(8), C(7), 
C(11), and C(10) carbon atoms respectively, due to their interaction with H resonance at  = 
7.4, 7.5, 7.8,7.80 ppm and 7.3 ppm.  

The voltammogram show the ligand reductions at the negative to SCE. The 
electrochemical properties were examined cyclic voltammetrically at a glassy carbon working 
electrode in MeCN. In the potential range +2.0 to -2.0 V at the scan rate 50 mV s-1 two redox 
couples are observed prominent and all are at the negative side of the voltammogram. First 
one is quasireversible as is evident from peak-to-peak separation value, Ep>110 mV. The 
gold oxidation part is very negligible. One electron nature of the redox process is supported 
by the ipa/ipc ratio (ipa = anodic peak current and ipc = cathodic peak current) which varies -
0.30 to 0.39 and -0.60 to -0.75 and -0.99-1.01(irrev). The azo group in RaaiR´ may 
accommodate two electrons and hence two coordinated ligands should exhibit four reductive 
responses. However, within the available potential window two reductions were clearly 
observable as shown below. Third one is for the bipyridine molecule as expected from 
previous result of Ru-tris chelate complexes. 

 
 

[Au(bpy)(RaaiR)]  + e [Au(bpy)(RaaiR- )]

[Au(bpy)(RaaiR- )]  + e [Au(bpy)(RaaiR2- )]

[Au(bpy)(RaaiR2- )] [Au(bpy-)(RaaiR2- )]+ e  
 
 

CONCLUSION 

This work describes the isolation of a novel series of Gold(III) azo-imine complexes, 
[AuIII(bpy)(RaaiR/)]3+ and their spectral and elemental characterisation. 1H NMR study 
suggests quartet splitting of ethyl substitution. 13C (1H)NMR study suggests molecular 
skeleton. 1H-1H COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum 
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assign them to the carbon hydrogen atoms interaction. Electrochemistry assigns ligand 
reduction part rather than metal oxidation. 
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